Visualization Tools for Adaptive Mesh
Refinement Data

Gunther H. Weber! and Vincent E. Beckner!' and
Hank Childs? and Terry J. Ligocki' and Mark C. Miller?
and Brian Van Straalen! and E. Wes Bethel!

!Computing Research Division, Lawrence Berkeley National Laboratory,
1 Cyclotron Road, Berkeley, CA 94720, USA

2Computing Applications and Research Department, Lawrence Livermore
National Laboratory, Box 808, L-557, Livermore, CA 94551, USA

GHWeber, VEBeckner;@lbl.gov, childs30@llnl.gov, TJLigocki®@lbl.gov
gov, gov, g gov,
miller86@1llnl.gov, {BVStraalen, EWBethel}@lbl.gov

Abstract

Adaptive Mesh Refinement (AMR) is a highly effective method
for simulations that span a large range of spatiotemporal scales, such
as astrophysical simulations that must accomodate ranges from inter-
stellar to sub-planetary. Most mainstream visualization tools still lack
support for AMR as a first class data type and AMR code teams use
custom built applications for AMR visualization. The Department
of Energy’s (DOE’s) Science Discovery through Advanced Computing
(SciDAC) Visualization and Analytics Center for Enabling Technolo-
gies (VACET) is currently working on extending Vislt, which is an
open source visualization tool that accommodates AMR as a first-
class data type. These efforts will bridge the gap between general-
purpose visualization applications and highly specialized AMR visual
analysis applications. Here, we give an overview of the state of the
art in AMR visualization research and tools and describe how Vislt
currently handles AMR data]

Appeared in: Proceedings of the 4th High-End Visualization Workshop, ISBN 978-3-
86541-216-4, Lehmanns Media, http://www.lob.de/

http://www.lob.de/

Figure 1: A simple Berger-Collela AMR hierarchy consisting of four patches
organized in three hierarchy levels.

1 Introduction

Adaptive Mesh Refinement (AMR) techniques combine the compact, implic-
itly specified structure of regular, rectilinear with the adaptivity to changes
in scale of unstructured grids. In this paper, we focus on block-structured,
h-adaptive AMR techniques that represent the computational domain with
a set of nested rectilinear grids or patches at increasing resolutions [Berger
& Colella, 1989]. Figure [1| shows a simple example. Four regular patches
are organized in three hierarchy levels. Grids belonging to a finer level are
always completely enclosed by grids of the coarser levels.

Handling AMR data for visualization is challenging, since coarser infor-
mation in regions covered by finer patches is superseded and replaced with
information from these finer patches. During visualization it becomes neces-
sary necessary to manage selection of which reslotuions are being used. Fur-
thermore, it is difficult to avoid discontinuities at level boundaries, which, if
not properly handled, lead to visible artifacts in visualizations.

While AMR data can be node centered, the majority of data sets we are
currently visualizing use a cell centered format. This fact poses an additional
challenge since many visualization algorithms expect data in a node centered
format. Despite the growing popularity of AMR simulations, little research
has been done in effective visualization of AMR data. Furthermore, there is

a lack of tools that treat AMR as first-class data type. In this paper we give
an overview of the current state of AMR research and describe ongoing work
to extend Vislt to be one of the first mainstream visualization tools with
“native” AMR support. Though other general visualization tools with AMR
support exist, such as ParaView [Squillacote, 2006] and customized versions
of Amira |Stalling et al., 2005|, exist, we focus our discussion on Vislt due
to its unique analytics capabilities.

2 Current State of AMR Visualization

2.1 Visualization of AMR Scalar Fields

Scalar quantities describe a variety of important physical characteristics such
as temperature or pressure. Most simulations, including AMR simulations,
include several scalar variables. Commonly used scalar data visualization
techniques include slicing planes, isosurface extraction and direct volume
rendering. Spreadsheets, which are somewhat related to slicing planes, pro-
vide direct access to data value and are valuable for debugging and extracting
data for further analysis with a wider range of tools such as Matlab or paper
and pencil.

2.1.1 AMR Visualization by Conversion to Other Types

Initial work on AMR visualization focused on converting AMR data to suit-
able conventional representations, which are subsequently used for visualiza-
tion. [Norman et al., 1999] described a method for visualizing AMR data
using is then visualized using standard unstructured grid techniques. Their
method converts an AMR hierarchy into an unstructured grid composed of
hexahedral cells. This resulting grid is then visualized utilizing standard
AVS, IDL, and VTK algorithms. By converting AMR data to an unstruc-
tured mesh, the implicit definition of grid connectivity is lost. Overhead
resulting from the required separate storage of grid structure results in poor
performance and does not scale well to large AMR data sets. Furthermore,
this approach prohibits using of the hierarchical nature of AMR data for
efficient visualization algorithms. Recognizing these fundamental problems,
Norman et al. continue by extending VTK to handle AMR grids as first-
class data structure. They have yet to publish detailed descriptions of their
techniques.

Figure 2: At the boundaries (center face in figure) between coarse (left face in
figure) and fine levels (right face in figure), dangling nodes (black rectangles
in the figure) occur in addition to vertices that are shared between grids
(black circles in the figure). On cell faces, marching cubes approximates
isosurfaces with line segments. This scheme can lead to cracks, as the actual
contour (bold line on center face) is approximate by a line segment in the
coarse level (left face) and a poly line in the fine level (right face).

2.1.2 Crack-free Isosurface Extraction

AMR data is particularly difficult to handle when visualizing data via iso-
surface extraction. This difficulty is due to the fact that AMR often uses a
cell centered data format while the marching cubes algorithm [Lorensen &
Cline, 1987), which is de-facto standard isosurface extraction algorithm in
scientific visualization, expects values at the vertices of a grid. Furthermore,
when extracting an isosurface using the marching cubes method, t-junctions
will lead to visible cracks in an isosurface, even if dangling nodes have values
that are consistent with the coarse level representation [Shekhar et al., 1996]
(see Figure [2).

[Weber et al., 2001b,[Weber et al., 2003a] developed a method that ex-
tracts crack-free isosurfaces from cell-centered AMR data by interpreting cell
centers of each patch of the AMR hierarchy as the vertices of a new patch,
which is the dual grid to the original patch. Within these dual grids, iso-
surfaces are extracted utilizing the standard marching cubes method. The
use of dual grids leads to gaps between different levels of an AMR hierar-
chy. Weber et al. use a procedural scheme to fill these gaps with “stitch”
cells (tetrahedra, pyramids, triangle prisms and deformed cubes) ensuring
that this step produces no t-junctions. Subsequently, they extract isosurface
portions within gaps between hierarchy levels utilizing the marching cubes
methods by giving appropriate case tables for these new cell types.

[Fang et al., 2004] presented an alternate isosurface extraction approach

for node-centered AMR data. Their main goal is preserving the original patch
structure and “identity” of cells, enabling a user to determine to what par-
ticular patch cell a triangle of an isosurface belongs. Their method achieves
this goal by extending refined patches until it is possible to assign values to
dangling nodes that are consistent with interpolation results in the coarser
level. Subsequently, they decompose coarse-level cells at the boundary to a
finer level into a set of pyramids that connect the cell center with all bound-
ary faces. For each “facet” of a subdivided face, i.e., a face at the boundary
to a finer level, a separate pyramid is created, ensuring that marching cubes
will not produce cracks in an extracted isosurface.

2.1.3 Volume Rendering

[Max, 1993| described sorting schemes for cells during volume rendering
including one method specifically geared toward AMR data. [Ma, 1999 de-
scribed and compared two approaches for rendering of structured AMR data
using the PARAMESH framework. A PARAMESH hierarchy organizes grids
as blocks in a quadtree (in 2-d space) or an octree (in 3-d space) structure.
Inner nodes of this tree correspond to regions that need further refinement
while leaf nodes specify a grid whose resolution is given by the current hi-
erarchy level. Ma described two approaches for volume rendering of AMR
data. One method resamples a hierarchy on an uniform grid at the finest
resolution. The resulting grid is evenly subdivided and each part rendered in
parallel on a separate processor. Partial images are combined using binary-
swap composition.

A second method preserves the AMR structure. Individual blocks (leaves
of the octree) are distributed among the processors in a round-robin fash-
ion to achieve static load balancing. Since a block structure can lead to
many small ray-segments, Ma buffers these segments into larger messages to
decrease communication overhead. Individual blocks are rendered using ray-
casting. Two sampling schemes are used: A simple approach using a fixed,
constant sample distance and an adaptive approach that decreases sample
distance in finer resolution blocks.

[Weber et al., 2001a] described an interactive, hardware accelerated vol-
ume rendering approach to generate previews of AMR data and a higher-
quality software approach based on cell projection. Both approaches use data
duplicated in coarser hierarchy levels as a less accurate approximation for the
data in finer levels. The hardware-based approach uses a k-d-tree-like struc-

ture to partition an AMR hierarchy into blocks of homogeneous resolution
and renders these blocks in back-to-front order. Based on view-dependent
criteria (e.g., the number of pixels covered by a voxel) and a measured render-
ing time for the current frame, the traversal depth into the individual patches
of the AMR hierarchy is chosen to achieve interactive rendering rates.

[Weber et al., 2001a] also described a software cell-projection-based ap-
proach to render AMR data sets in higher quality. While rendering a level of
an AMR hierarchy, additional information is stored for each pixel that makes
it possible to “replace” the contribution of those parts of the domain that
are refined by another hierarchy level with a more accurate representation,
supporting progressive rendering of AMR data sets. In later work, [Weber
et al., 2001a] used the dual mesh and stitch cells introduced for isosurface ex-
traction [Weber et al., 2003a] to define a C° continuous interpolation scheme
and utilized this interpolation method in their progressive cell-projection
rendering approach.

[Kreylos et al., 2002] described a framework for remote, interactive ren-
dering of AMR data. The framework consists of a “lightweight” viewer and
a renderer running on one or several remote machines. The method of Krey-
los et al. “homogenizes” an AMR hierarchy, i.e. partitions it in blocks of
constant resolution using a k-d tree. Resulting blocks of constant resolution
are distributed among processors and rendered using either a texture-based
hardware-accelerated approach or a software-based cell-projection renderer.
Two distribution strategies are implemented: One strategy attempts to dis-
tribute cost evenly among processors, the other variant tries to minimize data
duplication. [Weber et al., 2003b] built on this work and compared various
AMR partitioning strategies for parallel volume rendering of AMR data.

[Kahler & Hege, 2002 introduced a method that partitions Berger-
Colella AMR data into homogeneous resolution regions and visualizes it us-
ing texture-based hardware-accelerated volume rendering. Their partitioning
scheme uses a heuristic that is based on assumptions concerning the place-
ment of refining grid to minimize the number of constant-resolution blocks.
Generally, this approach generates fewer blocks than the approach described
by [Weber et al., 2001a] and the approach developed by [Kreylos et al., 2002].
Subdivision into a smaller number of blocks is beneficial when data is ren-
dered on a single machine.

In later work, |Kahler et al., 2002] used a set of existing tools to ren-
der results of a simulation of a forming star using the framework devel-
oped by |Bryan, 1999]. They define camera paths within a CAVE envi-

6

ronment using the Virtual Director virtual reality interface. Subsequently,
they render animations of the AMR simulation utilizing their previously de-
veloped hardware-accelerated volume rendering approach |[Kahler & Hege,
2002]. To enhance depth perception, rendered images are augmented with
a background that is obtained by rendering a particle simulation of the for-
mation of the early universe. Recently, [Kahler et al., 2006] implemented a
GPU-based ray-casting approach for AMR data, which improves rendering
quality considerably compared to slicing-based approaches and supports a
more complex light model with wavelength dependent absorption.

By specifying a transfer function, and a range of isovalues, |[Park et al.,
2002] produced volume-rendered images of AMR data based on hierarchical
splatting, see [Laur & Hanrahan, 1991]. Their method converts an AMR
hierarchy to a k-d-tree structure consisting of blocks of constant resolution.
Each node of this k-d tree is augmented with an octree. Octree and k-d-tree
nodes contain a 32-bit field, where each bit represents a continuous range
of isovalues. Using the k-d tree and the octree, regions containing values
within the specified range are identified and rendered back-to-front using
hierarchical splatting.

2.2 Visualization of Time-varying AMR Scalar Field
Data

[Chen et al., 2003] introduced the feature tree that describes, how connected
components of an isosurface change as one successively adds AMR refinement
levels. Nodes in a tree represent connected components of an isosurface,
with each level in the tree corresponding to a level in the AMR hierarchy.
The resulting tree describes whether a connected component splits or merges
when considering a finer hierarchy level. Using the resulting feature tree, it
becomes possible to describe how individual isosurface components change
over the course of time in a simulation.

[Kaehler et al., 2005] described a framework for visualization of time-
varying AMR data. Their method addresses the problem that most AMR
simulations update finer AMR patches more frequently than coarse patches.
Considering two subsequent time steps, their interpolation scheme first en-
sures that both time-steps have the same refinement configuration, i.e., that
each cell that is refined in one time step is also refined in the other time
step. Values for cells that are not refined in the current time step but the

other are obtained by interpolation. Subsequently, they define an interpola-
tion scheme to compute intermediate values in regions that are covered by
coarser level and thus, updated less frequently. In addition to this interpola-
tion scheme, their framework automatically handles remote data access and
computes interpolated values on the machine, which also runs the simulation.

3 Custom AMR Visualization Tools

3.1 ChomboVis

ChomboVis [Ligocki et al., 2003 is an AMR visualization tool built to vi-
sualize AMR data produced by Chombo |[Chombo, 2007]—an AMR library
distributed by the Applied Numerical Algorithms Group (ANAG). Data is
stored in files using HDF5. ChomboVis reads these files and uses VTK along
with custom Python and C++ code for visualization. A variety of meth-
ods are provided for visualizing the data sets including color mapping, grid
display, slicing, isosurfaces/contours and streamlines. Users can browse the
data directly via spreadsheets by selecting grids graphically or via indices.
ChomboVis has both a graphical user interface and a Python application
programming interface (API) to facilitate interactive use and scripting.

ChomboVis has rudimentary support for vector field visualization. A GUI
interface allows a user to specify which scalar data fields should be combined
to form a d-dimensional vector in RY, as well as specify a rake (a line segment
in R? with seed points space equidistantly). These seed points are integrated
either forward or backward (using negative vectors) using backward Euler
integration with a user-specified step length for a user-specified number of
steps. After each step a check is made to determine if the current position is
still inside the current AMR box. If it is, integration is continues, otherwise,
the AMR hierarchy is searched, from finest to coarsest, to determine a box
in which integration can be continued. These are streamlines, not to be
confused with streaklines or pathlines.

3.2 Amrvis

Amrvis is a visualization and data analysis tool for examining data files gen-
erated by the Center for Computational Sciences and Engineering (CCSE)
using their AMR codes. A user can view color planar images of the data,

grids, numerical values in a chosen format, subregions, animations, volumet-
ric renderings, contour plots, line graphs and 2D vector fields using arrow
glyphs. Amrvis works with 2D and 3D data, requires no specialized graph-
ics hardware, and can run in parallel on both SMP and distributed memory
parallel machines. The user can interactively choose the displayed variable
(density, pressure, etc.) and AMR level, scale the images, set arbitrary data
ranges, and set viewing planes. Amrvis also has batch capabilities for ex-
tracting subregions, planes, lines, and points from data files and for pre-
processing volume renderings. A separate tool, Amrmovie, can be used to
view, animate, and output volume renderings. This tool can animate volume
data, which has been preprocessed with Amrvis, at arbitrary orientations
and through time. Another separate tool, Amrderive, can be used to access
and manipulate AMR data. Examples include deriving a new variable such
as vorticity or log of density, calculating integrals, and finding average values
across multiple files.

4 Visualization of AMR Data with Vislt

Vislt [Childs & Miller, 2006] is a richly featured visualization and analysis
tool for large data sets. It employs a client-server model where the server
is parallelized. The nature of parallelization is data parallel; the input data
set is partitioned among Vislt’s processors. In the case of AMR data, each
patch is treated as an atomic unit and assigned to one of the processors on
Vislt’s parallelized server. For example, patches “level zero, patch zero” and
“level one, patch two” may be assigned to the server’s processor zero, while
patches “level zero, patch one,” “level one, patch zero,” and “level one, patch
one” may be assigned to processor one.

Visualization and analysis of massive scale data sets is an important use
case for Vislt. As such, it employs many optimizations to enable the process-
ing of this data. For example, Vislt is able to use spatial extents meta-data
to reduce the amount of data that is processed. When a slice of a three-
dimensional data set is being rendered, Vislt is able to to limit the patches
processed to those that actually intersect the slice. Although this function-
ality may sound straight forward, it is difficult to implement in a richly
featured, module based framework. More information about the contract

methodology that enables these optimizations can be found in [Childs et al.,
2005)].

Vislt’s handling of AMR data is made possible by marking coarse cells
that are refined at a lower level as “ghost.” This marking is done by adding
an array to each patch that designates the status of each cell (ghost or non-
ghost). Most algorithms can ignore the ghost markings; they operate identi-
cally on ghost and non-ghost cells. One advantage of using the ghost cells is
that it allows structured grids to retain their native form. That is, removing
the ghost cells before applying visualization algorithms would create a grid
that was no longer structured. The resulting grid would often be unstruc-
tured and that unstructured grid could have a memory footprint that is an
order of magnitude larger. Another advantage of using ghost cells is that they
allow for proper interpolations to take place, which would not be possible if
refined cells were removed before applying visualization algorithms. After all
algorithms have been applied, a module walks the data set and removes all
cells or geometry resulting from a ghost cell.

Vislt employs the standard Marching Cubes algorithm to contour data.
Most AMR data is cell-centered, requiring interpolation to the nodes. For
hanging nodes at the boundary of patches at different refinement levels, this
interpolation is done incorrectly in Vislt and cracked isosurfaces can result.
However, Vislt does not produce cracked isosurfaces when abutting patches
are at the same refinement level. In this case, Vislt can create a layer of
ghost cells around each patch that contains the values of neighboring cells
from the other patches. These ghost cells allow for correct interpolation to
take place, meaning that a consistent contouring takes place from patch to
patch and no cracks are created in this case.

Vislt’s employs a data parallel volume rendering scheme that is able
to resolve the types of complex sorting issues that arise in unstructured
meshes [Childs et al., 2006[. AMR meshes present a special type of load
balancing challenge for Vislt’s volume rendering algorithm, however. The
running time of the algorithm is dependent on the amount of data and the
amount of samples. For AMR meshes, the patches at the coarser refinement
levels occupy a larger spatial footprint, and, as such, often cover a much
larger portion of the picture and contribute more samples. Hence, sampling
the patches at coarser refinement levels typically takes much longer than the
sampling for patches at finer refinement levels. Vislt attempts to counteract
this problem by minimizing the amount of patches at the coarse refinement
levels on any given processor. In terms of additional AMR handling, the
volume rendering algorithm ignores all samples from cells that are marked
ghost. So if a sample point is contained by many patches at different refine-

10

ment levels, only the value at the finest level will be accepted, since all other
levels will have the corresponding cell marked as ghost.

A trend of increasing importance is where visualization and analysis ca-
pabilities are coupled in one production quality application. Here, analysis
means computing statistical moments of subsets of AMR hierarchies, distri-
bution functions, computed/derived quantities, temporal analysis, etc. Vislt
provides a rich set of analysis capabilities (such as integrating density over
volume to obtain mass, calculating volumes, surface areas, and moments of
inertia), all of which execute in parallel.

5 Future Work

We are currently working on extending Vislt’s visualization capabilities for
AMR data. To this end, we had extensive meetings with members of the
LBNL Applied Numerical Algorithms Group (ANAG) and the LBNL Center
for Computational Sciences and Engineering (CCSE). Some feature requests,
such as requests for support of picking abilities and spreadsheet support
(duplicating functionality present in Amrvis and ChomboVis) indicate that
visualization is still used frequently for debugging. On the other hand there is
a growing need for for data analysis and visualization capabilities to interpret
the results of production AMR simulations. For example, we are currently
working on adding line integral convolution-based vector field visualization
capabilities to Vislt. Some extensions, such as the spreadsheet interface, are
already part of the recent Vislt 1.6 release, even though this functionality is
still under development.

6 Acknowledgments

This work was supported by the Director, Office of Advanced Scientific Com-
puting Research, Office of Science, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231 through the Scientific Discovery through
Advanced Computing (SciDAC) program’s Visualization and Analytics Cen-
ter for Enabling Technologies (VACET). We thank the members of the LBNL
Visualization Group, the LBNL ANAG, the LBNL CCSE, and the Vislt de-

velopment team.

11

References

[Berger & Colella, 1989] Berger, M. & Colella, P. (1989). Local adaptive
mesh refinement for shock hydrodynamics. Journal of Computational
Physics, 82, 64-84.

[Bryan, 1999] Bryan, G. L. (1999). Fluids in the universe: Adaptive mesh
refinement in cosmology. Computing in Science and Engineering, 1(2).

[Chen et al., 2003] Chen, J., Silver, D., & Jiang, L. (2003). The feature tree:
Visualizing feature tracking in distributed amr datasets. In Proceedings

of the IEEE Symposium on Parallel and Large-Data Visualization and
Graphics 2003 (pp. 103-110).: IEEE Computer Society.

[Childs et al., 2005] Childs, H., Brugger, E. S., Bonnell, K. S., Meredith,
J. S., Miller, M., Whitlock, B. J., & Max, N. (2005). A contract-based
system for large data visualization. In IEEE Visualization 2005 (pp. 190—
198).

[Childs et al., 2006] Childs, H., Duchaineau, M. A., & Ma, K.-L. (2006).
A scalable, hybrid scheme for volume rendering massive data sets. In

Eurographics Symposium on Parallel Graphics and Visualization (pp. 153—
162).

[Childs & Miller, 2006] Childs, H. & Miller, M. (2006). Beyond meat
grinders: An analysis framework addressing the scale and complexity of

large data sets. In SpringSim High Performance Computing Symposium
(HPC 2006) (pp. 181-186).

[Chombo, 2007] Chombo (2000-2007). http://seesar.lbl.gov/ANAG/
chombo/.

[Fang et al., 2004] Fang, D. C., Weber, H., G., Childs, H., Brugger, E.,
Hamann, B., & Joy, K. (2004). Extracting geometrically continuous isosur-
faces from adaptive mesh refinement data. In Proceedings of 2004 Hawaii

International Conference on Computer Sciences (DVD-ROM conference
proceedings) (pp. 216-224). ISSN 1545-6722.

[Kaehler et al., 2005] Kaehler, R., Prohaska, S., Hutanu, A., & Hege, H.-C.
(2005). Visualization of time-dependent remote adaptive mesh refinement
data. In IEEFE Visualization 2005 (pp. 175-182).: IEEE Computer Society.

12

http://seesar.lbl.gov/ANAG/chombo/
http://seesar.lbl.gov/ANAG/chombo/

[Kéhler et al., 2002] Kéhler, R., Cox, D., Patterson, R., Levy, S., Hege, H.-
C., & Abel, T. (2002). Rendering the first star in the universe — a case
study. In IEEE Visualization 2002 (pp. 537-540).: IEEE Computer Soci-
ety.

[Kéhler & Hege, 2002] Kahler, R. & Hege, H.-C. (2002). Texture-based vol-
ume rendering of adaptive mesh refinement data. The Visual Computer,
18(8), 481-492. Zuse Institut Technical Report ZR-01-30.

[Kéhler et al., 2006] Ké&hler, R., Wise, J., Abel, T., & Hege, H.-C. (2006).
GPU-assisted raycasting for cosmological adaptive mesh refinement simu-
lations. In Proceedings of Volume Graphics: Eurographics Association.

[Kreylos et al., 2002] Kreylos, O., Weber, G. H., Bethel, E. W., Shalf, J. M.,
Hamann, B., & Joy, K. I. (2002). Remote Interactive Direct Volume Ren-
dering of AMR Data. Technical Report LBNL 49954, Lawrence Berkeley
National Laboratory.

[Laur & Hanrahan, 1991] Laur, D. & Hanrahan, P. (1991). Hierachical splat-
ting: A progressive refinement algorithm for volume rendering. Computer
Grahpics (Proceedings of ACM SIGGRAPH 91), 25(4), 285-288.

[Ligocki et al., 2003] Ligocki, T. J., Straalen, B. V., Shalf, J. M., Weber,
G. H., & Hamann, B. (2003). A framework for visualizing hierarchical
computations. In Hierarchical and Geometrical Methods in Scientific Vi-
sualization (pp. 197-204). Springer Verlag.

[Lorensen & Cline, 1987] Lorensen, W. E. & Cline, H. E. (1987). Marching
cubes: A high resolution 3D surface construction algorithm. Computer

Graphics (Proceedings of ACM SIGGRAPH 87), 21(4), 163-169.

[Ma, 1999] Ma, K.-L. (1999). Parallel rendering of 3D AMR data on the
SGI/Cray T3E. In Proceedings of Frontiers 99 the Seventh Symposium
on the Frontiers of Massively Parallel Computation (pp. 138-145).: IEEE
Computer Society.

[Max, 1993] Max, N. L. (1993). Sorting for polyhedron compositing. In
Focus on Scientific Visualization (pp. 259-268). Springer-Verlag.

[Norman et al., 1999] Norman, M. L., Shalf, J. M., Levy, S., & Daues, G.
(1999). Diving deep: Data management and visualization strategies for

13

adaptive mesh refinement simulations. Computing in Science and Engi-
neering, 1(4), 36-47.

[Park et al., 2002] Park, S., Bajaj, C., & Siddavanahalli, V. (2002). Case
study: Interactive rendering of adaptive mesh refinement data. In IFEFE
Visualization 2002 (pp. 521-524).: IEEE Computer Society.

[Shekhar et al., 1996] Shekhar, R., Fayyad, E., Yagel, R., & Cornhill, J. F.
(1996). Octree-based decimation of marching cubes surface. In IEEFE
Visualization 96 (pp. 335-342, 499).: IEEE Computer Society.

[Squillacote, 2006] Squillacote, A. H. (2006). The ParaView Guide. Kitware.

[Stalling et al., 2005] Stalling, D., Westerhoff, M., & Hege, H.-C. (2005).
Amira: A highly interactive system for visual data analysis. In The Visu-
alization Handbook (pp. 749-767). Elsevier.

[Weber et al., 2001a] Weber, G. H., Hagen, H., Hamann, B., Joy, K. L.,
Ligocki, T. J., Ma, K.-L., & Shalf, J. M. (2001a). Visualization of adaptive
mesh refinement data. In Proceedings of the SPIE (Visual Data Exploration
and Analysis VIII), volume 4302 (pp. 121-132).

[Weber et al., 2001b] Weber, G. H., Kreylos, O., Ligocki, T. J., Shalf, J. M.,
Hagen, H., Hamann, B., & Joy, K. I. (2001b). Extraction of crack-free
isosurfaces from adaptive mesh refinement data. In Proceedings of the
Joint EUROGRAPHICS and IEEE TCVG Symposium on Visualization,
Ascona, Switzerland, May 28-31, 2001 (pp. 25-34, 335).: Springer Verlag,.

[Weber et al., 2003a] Weber, G. H., Kreylos, O., Ligocki, T. J., Shalf, J. M.,
Hagen, H., Hamann, B., & Joy, K. I. (2003a). Extraction of crack-free
isosurfaces from adaptive mesh refinement data. In Hierarchical and Geo-
metrical Methods in Scientific Visualization (pp. 19-40). Springer Verlag.

[Weber et al., 2003b] Weber, G. H., Ohler, M., Kreylos, O., Shalf, J. M.,
Bethel, E. W., Hamann, B., & Scheuermann, G. (2003b). Parallel cell
projection rendering of adaptive mesh refinement data. In Proceedings

of the IEEE Symposium on Parallel and Large-Data Visualization and
Graphics 2003 (pp. 51-60).: IEEE Computer Society.

14

Index

Adaptive Mesh Refinement (AMR),
AmrVis, []

Chombo,
ChomboVis,

Vislt,

15

	Introduction
	Current State of AMR Visualization
	Visualization of AMR Scalar Fields
	AMR Visualization by Conversion to Other Types
	Crack-free Isosurface Extraction
	Volume Rendering

	Visualization of Time-varying AMR Scalar Field Data

	Custom AMR Visualization Tools
	ChomboVis
	Amrvis

	Visualization of AMR Data with VisIt
	Future Work
	Acknowledgments

