
The Utah Teapot - Fall 2007

Announcing VisTrails 1.0

VisTrails is a new system that provides data
and process management support for exploratory
computational tasks. It combines features of both
workflow and visualization systems. Like many
workflow systems, it enables seamless integration
of loosely-coupled resources such as specialized
libraries, grid, and web services. Likewise, it parallels
some visualization systems by providing a mechanism
to perform parameter explorations and result
comparisons. But unlike these systems, VisTrails was
designed to manage exploratory activities, where
computational tasks are iteratively refined as users
formulate and test hypotheses. A key distinguishing
feature of VisTrails is a comprehensive provenance
infrastructure that maintains detailed history
information about the steps followed and data derived
in the course of an exploratory task. VisTrails leverages
this information to provide novel operations and user
interfaces that streamline this process.

Project History. Professors Juliana Freire and
Claudio Silva started this project in 2005 and they
have been funded by grants and contracts from NSF, DOE,
and IBM. The VisTrails team includes six Ph.D. students as
well as M.S. and undergraduate students. Since its early
development stages, the VisTrails system has been available
to a number of external collaborators who have provided
invaluable feedback. These include researchers at Cornell
University, California Institute of Technology, The Oregon &
Health Science University, and the University of Utah. A beta
version of VisTrails was made available (as open source) in late
January 2007. Since then, the system has been downloaded
over 2000 times. VisTrails 1.0 will be released on October
31st.

On the Need of Provenance for Computational Tasks.
Computing has been an enormous accelerator for science,
leading to an information explosion in many different
fields. Future scientific advances depend on our ability
to comprehend the vast amounts of data currently being
produced and acquired. However, to analyze and understand
this data we must assemble complex computational
processes and generate insightful visualizations, which often
require combining loosely coupled resources, specialized
libraries, and grid and Web-services. Such processes generate
yet more data, adding to the information overflow scientists
currently deal with. Today, the scientific community uses ad
hoc approaches for data exploration, but such approaches
have serious limitations. In particular, scientists and engineers
must expend substantial effort to manage these data (such

as scripts that encode computational tasks, raw data, data
products, images, and notes) and record provenance so that
they can answer basic questions: Who created a data product
and when? When was it modified, and who modified it?
What process was used to create the data product? Were two
data products derived from the same raw data? This process
is not only time-consuming, but also error-prone. Without
provenance, it’s difficult (and sometimes impossible) to
reproduce and share results, solve problems collaboratively,
validate results with different input data, and understand
the process used to solve a particular problem. In addition,
the longevity of data products becomes limited—without
precise and sufficient information about how the data
product was generated, its value diminishes significantly.

The lack of adequate provenance support in visualization
and workflow systems motivated us to build VisTrails, an
open source provenance management system that provides
infrastructure for data exploration and visualization
through workflows. VisTrails transparently records detailed
provenance of exploratory computational tasks (see Fig.
1). This information not only enables the reproducibility of
results, but it also allows scientists to easily navigate through
the space of workflows and parameter settings used in a
given exploration task. Powerful operations are also possible
through direct manipulation of the provenance information.
These include the ability to re-use workflows and workflow
fragments through a mechanism for refining workflows
by analogies; to explore a multi-dimensional slice of the

by the VisTrails Group

Fig 1: The VisTrails history tree contains a node for each version of a workflow (or
pipeline) as it evolves over time. This results in a complete audit trail of the steps
that were taken in a computational task.

The Utah Teapot - Fall 2007

parameter space of a workflow and generate a large number
of data products through bulk-updates; to analyze (and
visualize) the differences between two workflows (see Fig. 2);
and to support collaborative data exploration in a distributed
and disconnected fashion. These operations, combined with
an intuitive interface for comparing the results of different
workflows, simplify, to a great extent, the scientific discovery
process.

VisTrails provides a comprehensive provenance
management infrastructure that can be combined with and
extend existing workflow and visualization systems. Some
distinguishing features of the system include:

•	 Flexible	Provenance	Architecture. VisTrails transparently
tracks changes made to workflows by recording all the steps
followed during the exploration. The system can optionally
track run-time information about the execution of workflows
(e.g., who executed a module, on which machine, elapsed time
etc.). VisTrails also provides a flexible annotation framework
whereby users can specify application-specific provenance
information.

•			 Querying	 and	 Re-using	 History. The provenance
information is stored in a structured way. Users have a
choice of using a relational database (e.g., MySQL and IBM
DB2) or XML files in the file system. The system provides
flexible and intuitive query interfaces through which users
can explore and re-use provenance information. Users can
formulate simple keyword-based and selection queries (e.g.,
visualizations created by a given user) as well as structured
queries (e.g., visualizations that apply simplification before an
isosurface computation for irregular grid data sets). VisTrails
also provides a query-by-example interface in which users
create queries using the same interface they use to construct
workflows.

•	 Support	 for	 collaborative	 exploration. The system
can be configured with a database backend that is used as
a shared repository for generated workflows and provenance
information. It also provides a synchronization facility
that allows users to collaborate asynchronously and in a
disconnected fashion: users can check in and check out
changes, akin to a version control system (e.g., svn).

•	 Extensibility. VisTrails provides a very simple plug-in
functionality that can be used to dynamically add packages
and libraries. Neither changes to the user interface nor
recompilation of the system are necessary. Because VisTrails is
written in Python, the integration of Python-wrapped libraries
is straightforward.

•	 Scalable	 Derivation	 of	 Data	 Products	 and	 Parameter	
Exploration. VisTrails supports a series of operations for

the simultaneous generation of multiple data products
including an interface that allows users to specify sets of
values for different parameters in a workflow. The results
of parameter explorations are displayed side by side in the
VisTrails Spreadsheet for easy comparison.

•	 Task	Creation	by	Analogy. Analogies are supported
as first-class operations to guide semi-automated changes
to multiple workflows without requiring users to directly
manipulate or edit the workflow specifications.

Obtaining the Software. Visit http://www.vistrails.
org to access the VisTrails community Web site. There, you
will find information including instructions for obtaining
the software, online documentation, video tutorials, and
pointers to papers and presentations. VisTrails is written
in Python and it uses the multi-platform Qt library for its
user interface. The system is available as open source; it
is released under the GPL 2.0 license. The pre-compiled
versions for Windows, Mac OS X, and Linux, come with
an installer and include a number of packages, including
VTK, matplotlib, and ImageMagick. Additional packages,
including packages written by users, are also available (e.g.,
ITK, Matlab, Metro).

Fig 2: The VisTrails Visual Difference interface shows the difference
between two nodes in the history tree as an annotated workflow.
Modules that are unique are shown in orange and blue, modules that
contain a parameter change between versions are shown in light
gray, and unchanged modules are shown in dark gray. This feature
is important for understanding a computational task by allowing the
user to interact with their history.

