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Abstract. While the primary product of scientific visualization is images and
movies, its primary objective is really scientific insight. Too often, the focus of
visualization research is on the product, not the mission. This paper presents
two case studies, both that appear in previous publications, that focus on us-
ing visualization technology to produce insight. The first applies “Query-Driven
Visualization” concepts to laser wakefield simulation data to help identify and
analyze the process of beam formation. The second uses topological analysis to
provide a quantitative basis for (i) understanding the mixing process in hydro-
dynamic simulations, and (ii) performing comparative analysis of data from two
different types of simulations that model hydrodynamic instability.

1. Introduction

Galileo Galilei’s improvements to early telescope design first opened up the heav-
ens, the satellites of Jupiter, sunspots, and even the rotation of the Sun. He
proved the Copernican heliocentric model of the solar system: it is the Sun, not
the Earth, that is the center of the solar system. Thus, the telescope became
the first device to make the “unseeable” “seeable.”

Today, scientific visualization plays an equally significant role in contempo-
rary science. Visualization transforms abstract data into readily comprehensible
images (e.g., Figure 1) and has become an indispensable part of the scientific
discovery process. In 1987, a landmark report from the computer graphics and
visualization community (McCormick 1987) coins the term “visualization in sci-
entific computing” and amplifies on the subject of its central role in the scientific
discovery process.
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Figure 1. This image shows the merging of two vortex cores, something not
possible to see by examining tables of numbers. Image courtesy Dave Pugmire
(ORNL), sample AMR data courtesy Phil Colella (LBNL) and the SciDAC
Applied Partial Differential Equations Center.

In (Butler 1993), Bergeron describes three broad user-centric visualization
use modalities. “Presentation visualization” is where you know what is there
and want to show it to someone else. “Analytical visualization” is where you
know what you are looking for. “Discovery visualization” occurs when you have
no idea what you’re looking for. Discovery visualization is characterized as
an “undirected search,” or “unconstrained navigation” through visualization or
rendering parameter space.

Each of these use modalities plays a key role at different stages in the sci-
entific process, and each has a unique set of architectural and resource require-
ments. Discovery visualization is typically employed early in the investigatory
process to uncover trends and anomalies in scientific data. It requires uncon-
strained, interactive navigation through an n−dimensional space (data variables,
time, and logical axes of structured grids), which in turn requires a potentially
great deal of I/O bandwidth and computational power. Exploration visualiza-
tion is most often conducted in an interactive fashion. Analytical visualization
serves to confirm, or not, the presence of features or characteristics in data.
It is often implemented as a non-interactive “standalone, post-process,” and as
such most often does not have the same I/O nor computational demands as ex-
ploration visualization due to the relaxation of interactivity and random-access
use patterns. Presentation visualization, like analytical visualization, serves to
communicate known characteristics about data in a particular way. It, too, is
most typically implemented as a non-interactive post-processing function.
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One of the major challenges faced by modern science is the explosion of
information. It is widely accepted the most significant bottlenecks in modern
science are the management of an ever-increasing amount of information and
deriving knowledge or insight from the tsunami of data (Mount 2004). The
visualization community has responded to this challenge in a number of different
ways. One is to use parallelism to scale existing algorithms to accommodate
larger datasets (Childs 2005; Law 2001) or to develop novel implementations of
existing algorithms suitable for deployment on parallel, distributed platforms
(Bethel 2000). These approaches have the side-effect of increasing the amount
of information a human must interpret; they make the “information overload”
problem worse, rather than better.

Another set of approaches, which we examine here, focus on reducing the
amount of information a human must interpret even though the datasets being
examined are larger and more complex. Section 2. presents the topic of “Query-
Driven Visualization,” where analysis, visualization, and human interpretation is
restricted to data deemed to be “scientifically interesting.” The idea is to extract
meaningful subsets of data, e.g., “interesting data,” and then subject those
subsets to analysis, visualization, and interpretation. “Interesting” is defined as
data that satisfy a multi-dimensional Boolean range query. This approach can
be used successfully for all three major visualization use modalities. Another
variation on this theme is the subject of Section 3., which focuses on extracting
features in data using topological analysis. This approach has the benefit of
providing a quantitative basis for comparative visualization and analysis.

2. Query-Driven Visualization (QDV)

2.1. What is QDV?

The term “Query-Driven Visualization” refers to the process of limiting visual-
ization processing and subsequent visual interpretation to data that is deemed
to be “interesting.” The basic premise is to restrict computational and cognitive
load by limiting processing and interpretation to features of interest. This ap-
proach is consistent with the needs of many scientific users who need capabilities
to help them find and focus on features hidden in large, multidimensional data
(Hamann 2002).

One of the significant challenges from the field of data management is data
searching, which, incidentally, is the key architectural linchpin for an efficient
and high-performance QDV implementation. Many approaches have been used
over the years, ranging from well-known constructs like B-trees Knuth (1998) to
complex indexing schemes. It is well known that tree-based indexing methods
suffer from the so-called “Curse of Dimensionality,” which dictates that stor-
age requirements grow exponentially with increasing dimensionality (Bellman
1961). In contrast, storage requirements for bitmap indices grow linearly with
increasing dimensionality; bitmap indices are really the only viable approach
for index/query for large, multidimensional scientific data. To efficiently answer
complex multidimensional, multivariate data queries, we turn to the scientific
data management community to leverage a form of compressed bitmap indexing
that has proven generally applicable to a broad range of applications, including
data analysis from High Energy Physics Experiments (Wu 2004).
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2.2. Case Study: Laser-Wakefield Simulation Data Analysis

We now present a specific example where we apply our system to perform visual
data analysis of 2D and 3D data produced by a laser wakefield particle accelera-
tor simulation. In these examples, both 2D and 3D datasets contain information
about each particle’s position, momentum, and a unique particle identifier. The
2D dataset contains about 400K particles in each of the 18 timesteps, and is
about 1.3GB in size, including the index structure. The 3D dataset contains
about 90M particles in each of the 30 timesteps, and is about 210GB in size,
including the index. These simulations model the effects of a laser pulse propa-
gating through a hydrogen plasma. Similar to the wake of a boat, the radiation
pressure of the laser pulse displaces the electrons in the plasma, and with the
space-charge restoring force of the ions, this displacement drives a wave (wake)
in the plasma. Electrons can be trapped and accelerated by the longitudinal
field of the wake, forming electron bunches of high energy.

In order to gain a deeper understanding of the acceleration process, we need
to address complex questions such as: (i) which particles become accelerated; (ii)
how are particles accelerated, and (iii) how was the beam of highly accelerated
particles formed and how did it evolve (Geddes 2005). To identify those particles
that were accelerated, we first perform selection of particles at a late timestep
(t = 37) of the simulation by using a threshold for the value for x-momentum,
px. By tracing the selected particles over time we will then analyze the behavior
of the beam during late timesteps and identify characteristic beam-substructures
during beam formation. In this context, we use selection of particles, ID-based
tracing of particles over time, and refinement of particle selections based on
information from different timesteps as main analysis techniques.
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Figure 2. An overview of the major components and data flow paths in our
implementation. Large-scale scientific data and indexing metadata are input
via a parallel I/O layer, which allows us to achieve high levels of performance
and parallel efficiency. We use an API at the I/O layer to perform paral-
lel computation of multidimensional histograms as well as data subsetting.
Results of those computations are used downstream in the visualization ap-
plication for presenting information to the user and in support of interactive
data mining actions.

System Overview The fundamental concepts in our implementation center
around effective I/O, effective presentation of information, and an effective mech-
anism that allows users to easily and quickly specify queries. From a high level,
the system allows a user to first see an overview of “all the data” using a multidi-
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mensional visual information display technique known as “parallel coordinates.”
The user then specifies the subset of data that is “interesting” by using the par-
allel coordinates display to define a multivariate range query. This query in turn
is given to an I/O layer, which either extracts the data subset or computes new,
more finely resolved histograms. Data subsets are sent to downstream process-
ing and analysis modules, while new histograms are in turn used as the basis
for constructing and displaying new, refined parallel coordinates plots. In our
implementation, the computational complexity of rendering parallel coordinates
plots – both context and focus views – is a function of histogram resolution,
not the size of the underlying data. Therefore, our approach is particularly
well-suited for application to extremely large data.

An overview of the system architecture is shown in Figure 2. Raw scientific
data, which is produced by simulation or experiment, is augmented by the com-
putation of indexing data. In our case, this step is performed outside the visual
data analysis application as a one-time preprocessing, and our implementation
uses FastBit (LBNL-SDM 2008) for creating index structures.

Beam Selection In order to identify the beam, i.e., find those particles that
become accelerated, we first concentrate on the last timestep of the simulation
(at t = 37). Using the parallel coordinates display, we select the particles of
interest by applying a threshold of px > 8.872∗1010. As is visible in the parallel
coordinates plot, those particles constitute two separate clusters (beams) in x
direction (Figure 3 c). Using a pseudocolor plot of the data, we can then see
the physical structure of the beam.

Beam Assessment Having identified the particles that are part of the beam,
we wish to (i) assess the quality of the beam, and (ii) analyze its formation.
We address these questions by enabling the user to efficiently trace selected
particles forwards and backwards in time. By tracing particles back in time, we
observe that the first bunch following the laser pulse (rightmost in these plots)
has lower momentum spread at its peak energy (at t = 27) than the second
bunch (see Figure 3a and 3b). In practice, the first beam following the laser
pulse is therefore typically the one of most interest to the accelerator scientists.
The fact that the second beam shows higher or equal acceleration at the last
timestep of the simulation is due to the fact that the first beam will outrun the
wave later in time and therefore switches into a phase of deceleration while the
second beam is still in an acceleration phase. In practice, when researchers want
to select only the first beam, they usually perform selection of the particles using
thresholding in px at an earlier time (e.g. t = 27) when the beam-particles of
interest have maximum momentum, rather than the last timestep, here t = 37.
By performing selection at an earlier time, one avoids selecting particles in the
second beam while being sure to select all particles in the first beam. In this
specific use case we are interested in analyzing and comparing the evolution of
these two beams, which is why we performed selection at the last timestep.

Beam Refinement To analyze formation and evolution of the beam, we trace
the selected particles further back in time to the point when the particles entered
the simulation and were injected into the beams. Based on the information at
timestep t = 14, we then refine our initial selection of the beam. By applying
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Figure 3. a) Parallel coordinates and b) pseudocolor plot of the beam at
t = 27. Corresponding plots c,d) at t = 37. The context plot, shown in
red, shows both beams selected by the user after applying a threshold of
px > 8.872 ∗ 1010 at t = 37. The focus plot, shown in green, indicates the
first beam that is following the laser pulse. In the pseudocolor plots b) and
d), we show all particles in gray and the selected beams using spheres colored
according to the particle’s x-momentum, px. The focus beam is the rightmost
bunch in these images. At timestep t = 27, the particles of the first beam
(green in figure a) show much higher acceleration and a much lower energy
spread (indicated via px) than the particles of the second beam. At later
times, the lower momentum of the first beam indicates it has outrun the wave
and moved into decelerating phase, e.g at timestep t = 37.

an additional threshold in x, we can select those particles of the beam that
are injected into the first wake period behind the laser pulse (see Figure 4a
and 4b). By comparing the temporal traces of the selected particle subset (green)
with the traces of the whole beam (red), we can readily identify important
characteristics of the beam (see Figure 4c). After being injected, the selected
particle subset (green) first defines the outer part of the first beam at timestep
t = 15, while additional particles are injected into the center of the beam. Later
on at timesteps t = 16 and t = 17, the selected particles become strongly
focused and define the center of the first beam. By refining selections based on
information at an earlier time, we are able to identify characteristic substructures
of the beam.
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Figure 4. a) By applying an additional threshold in x at timestep t = 14,
we separate the two different set of particles entering the simulation. b) The
refinement result, shown in physical space, includes all non-selected particles
(gray) to provide context. c) Particle traces of the complete beam and the
refined selection. In all plots we show the complete beam in red and the
refined selection in green. After entering the simulation, the selected particles
(green) define first the outer part of the first beam at timestep t = 15. Later
on at timesteps t = 16 and t = 17, these particles become highly focused and
define the center of the first beam.

3D Analysis Example We now describe an example analysis of the 3D particle
dataset. Figure 5(a and b) shows the beam selection step for this dataset. At a
much earlier timestep t = 12 (x ≈ 5.7 ∗ 10−4 compared to x ≈ 1.3 ∗ 10−3 in the
2D case) particles are trapped and accelerated. In order to get an overview of
the main relevant data, the user removed the background from the data first by
applying a threshold of px > 2.0∗109. The user then selected particles in the first
bunch via thresholding based on the momentum in x direction (px > 4.586∗1010)
and x position (x > 5.649 ∗ 10−4) to exclude particles in the secondary periods
from the selection. Figure 5b shows a volume rendering of the plasma density
along with the selected particles revealing the physical location of the selected
beam within the wake. Figure 5c shows the traces of the particles selected
earlier in Figure 5a. We selected the particles at timestep t = 12 then traced
them back to timestep t = 9 where most of the selected particles enter the
simulation window and forward in time to timestep t = 14. As one can see in
the plot, the selected particles are constantly accelerated over time.

Performance Prior to our collaboration with the accelerator scientist, his usual
method for performing the type of analysis we describe in earlier sections was
entirely manual, and performed in a serial fashion. He would examine phase-
space plots at different timesteps to visually identify particles having both high
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Figure 5. a) Parallel coordinates of timestep t = 12 of the 3D dataset.
Context view (gray) shows particles selected with px > 2 ∗ 109. The focus
view (red) shows particles satisfying the condition (px > 4.856 ∗ 1010) AND
(x > 5.649 ∗ 10−4), which form a compact beam in the first wake period
following the laser pulse. b) Volume rendering of the plasma density and the
selected focus particles (red). c) Traces of the beam. We selected particles
at timestep t = 12, then traced the particles back in time to timestep t = 9
when most of the selected particles entered the simulation window. We also
traced the particles forward in time to timestep t = 14. Color indicates px.
In addition to the traces and the position of the particles, we also show the
context particles at timestep t = 12 in gray to illustrate where the original
selection was performed. We can see that the selected particles are constantly
accelerated over time (increase in px).

momentum and a high degree of spatial coherence. Having identified a set of
candidate particles, he would generate a list of particle IDs, then run an IDL
script (in serial) to extract target particles from all simulation timesteps, then
perform further analysis. The process of extracting particles from all timesteps
would require hours of runtime due to a combination of the serial nature of pro-
cessing and the somewhat inefficient (but easy to implement) search algorithm.

We conducted an extensive performance analysis of our system that focuses
on the following factors: (1) scalability and parallel performance of the algo-
rithm for computing 2D conditional histograms, which form the basis for visual
information display in parallel, from multidimensional time-varying datasets, (2)
the scalability and parallel performance of an algorithm that performs particle
extraction from a multi-terabyte sized dataset. The results of that study, which
are presented in detail in (Rübel 2008), show that our techniques exhibit excel-
lent scalability, parallel performance, and absolute wallclock runtime. We were
able to sucessfully replace a manual process that required hours of runtime with
one that executes in parallel on a Cray XT4 system in only a few seconds. This
type of performance helps to improve scientific productivity during the process
of exploratory visual data analysis.

3. Robust Topological Techniques for Large Scale Data Analysis

A deeper understanding of simulated phenomena requires powerful data anal-
ysis tools that go beyond generating images for display. Often, this analysis
takes the form of defining, detecting, and quantifying features in data, features
that can and do exist at multiple scales in data. The definition of a feature is
application-dependent and often difficult to capture with mathematical rigor. In
the analysis of data produced by hydrodynamic instability simulations, a “bub-
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ble” and “bubble counts” are examples of features that are easy to spot visually
but difficult to define with rigor. They are easy to spot visually in early stages
of the simulation and appear as uniform, similarly-sized bumps in the interface
surface (see Figure 7). In later stages, when turbulence dominates the mixing
process, a bubble can show multi-scale properties, where a large bubble consists
of many smaller bubbles.

Recent developments in the field of computational topology provide the
mathematical foundations and algorithms to tackle problems in this area. Be-
cause the mathematics is developed in an abstract setting, it can be adapted
to a specific problem, such as the analysis of bubble structures in the hydrody-
namic instability simulation. Because the algorithms are strictly combinatorial,
they are robust and can provide rigorous guarantees about the computation re-
sults. Such guarantees are crucial features that are missing in many numerical
algorithms that compute topological features. Our analysis algorithms are scal-
able – we have applied them to datasets having up to 30723 grid resolution.
As described in Section 3.2., we have for the first time provided a quantitative
comparison and validation of two different classes of simulations of the same
physical phenomenon.

The contents of this section are a summary of several publications and prior
research. For a more detailed description on the data layout scheme see (Pascucci
2001), for topology-based analysis (Cole 2003; Edelsbrunner 2003; Bremer 2003,
2004; Natarajan 2006), and for application of these techniques to the analysis of
simulation data, including hydrodynamic instability, see (Laney 2006; Gyulassy
2007; Miller 2006).

3.1. Morse Theory for Robust, Multi-scale Feature Analysis

To begin, we present some background from Morse theory (Milnor 1963) and
from combinatorial and algebraic topology (Alexandrov 1998; Munkres 1984).

Smooth maps on manifolds. Let f : M → R be a smooth map. A point
x ∈ M is a critical point of f if the gradient of f vanishes at x, and the value f(x)
is a critical value. Non-critical points and non-critical values are called regular
points and regular values, respectively. A critical point x is non-degenerate if the
Hessian (matrix of second-order partial derivatives) at x is non-singular. The
index of a critical point x is the number of negative eigenvalues of the Hessian.
For d = 3, there are four types of non-degenerate critical points: the minima
(index 0), the 1-saddles (index 1), the 2-saddles (index 2), and the maxima
(index 3). A function f is Morse if all critical points are non-degenerate with
distinct values.

Morse-Smale complex. An integral line is a maximal path on M whose
tangent vectors are parallel to the gradient of f . The stable manifold of a
critical point x is the union of x and all integral lines that end at x. The
unstable manifold of x is defined symmetrically as the union of a critical point
x and all integral lines that start at x. One can superimpose the stable and
unstable manifolds of all critical points to create the Morse-Smale complex (or
MS complex) of f (Edelsbrunner 2003; Bremer 2004), see Figure 6(a)–(d). The
nodes of this complex are the critical points of f , its arcs are integral lines
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(a) (b) (c) (d) (e)

Figure 6. MS-complex construction, simplification and topologically valid
approximation: (a) Morse function with critical points shown; (b) Stable man-
ifolds; (c) Unstable manifolds; (d) MS-complex; (e) MS-complex and manifold
after simplification. Maxima are solid blue, minima are solid white, and sad-
dles are mixed.

starting or ending at saddles and its regions are the non-empty intersections
of stable and unstable 2-manifolds. More details on the definition of the MS-
complex on 2-manifold triangle meshes and algorithms to compute it are given
by Bremer et al. (Bremer 2004).

Simplification. It is often useful to simplify a MS-complex to remove noise
and to perform multi-scale function analysis. Following (Bremer 2004), we per-
form cancellations of arc-connected maximum-saddle and minimum-saddle crit-
ical point pairs to simplify an MS-complex. Cancellations are ranked by their
persistence – the absolute difference in function value between the canceled crit-
ical point pair. Figure 6(e) shows an example of a topological simplification and
a corresponding approximation of f .

Computation. In practice, one usually deals with piecewise linear (PL) func-
tions given at the vertices of a triangulation. See (Bremer 2004) for a detailed
discussion on how to translate concepts from the generic smooth functions dis-
cussed above to PL-functions. Starting from saddles, we compute the arcs of
the MS-complex as the steepest, non-crossing monotone lines. Because we avoid
mesh refinement to handle degeneracies, and instead directly handle merged
lines and multi-saddles, we can use efficient static data structures to store the
triangulation and can compute MS-complexes of large data sets. We are now
ready to describe how we use the MS-complex to analyze the Rayleigh-Taylor
simulations developed at Lawrence Livermore National Laboratory (Cook 2001).
This analysis is described in detail in (Laney 2006).

3.2. Analysis of Turbulent Mixing in Hydrodynamic Instabilities

Understanding the turbulent mixing of fluids is one of the fundamental research
problems in the area of fluid dynamics. Turbulent mixing occurs in a broad
spectrum of phenomena ranging from boiling water to astrophysics and nuclear
fusion. Rayleigh-Taylor instability (RTI) occurs when two fluids of different
density are accelerated opposite the mean density gradient. That is, a heav-
ier fluid is accelerated against a lighter fluid by a force like gravity. Figure 7
shows the mixing layers and the progression of the mixing process. The heavy
fluid accelerates downward, forming “spikes,” while the light fluid moves up-
ward forming “bubbles.” The bubbles and spikes are thought to be one way to
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Figure 7. An overview of the 11523 simulation (periodic in x and y) of the
Rayleigh-Taylor instability at start (t = 0), early (t = 200), middle (t = 400),
and late (t = 700) time. The light fluid has a density of 1.0, the heavy
fluid has a density of 3.0. Two envelope surfaces (at densities 1.02 and 2.98)
capture the mixing region. The boundaries of the box show the density field
in pseudocolor. We analyze the upper envelope to study bubble structures
and the midplanes to study mixing trends.

characterize the large-scale behavior of the mixing process. Scientists analyz-
ing these simulations are particularly interested in the number of bubbles (and
spikes) and their respective evolution. Large-scale models have been proposed
based on bubble dynamics in which bubble growth, movement, and interaction
are modeled (Alon 1996). Our analysis is performed on the envelope surfaces
describing the boundary between undisturbed and “mixed” fluids.

We use multiresolution data layout and access techniques described in (Pas-
cucci 2001) for efficient data management and the techniques described in Sec-
tion 3.1. for the analysis.

Segmentation of bubbles. One of the challenges in analyzing mixing behav-
ior is that there exists no prevalent mathematical definition for what constitutes
a bubble/spike. In general, a bubble can be understood as a three dimensional
feature composed of lighter density fluid moving upwards (in the Z-direction)
into a heavier density fluid. We use the topological concepts introduced in Sec-
tion 3.1. to define bubbles, spikes and other features of interest. Consider the
images of the segmented mixing envelope surface at different times shown to the
left, bottom, and right of the plot in Figure 8. During early time steps (Figure 8
upper left and middle left), it is natural to consider the mixing envelope as a
time-varying functional surface defined over the XY -plane (i.e, a function with
a single value per XY coordinate such as in a terrain) and to associate local
maxima with bubbles. This analogy fails at later time steps because the surface
becomes non-functional.

However, we can generalize this approach by treating the envelope surface
as the domain of a function whose value at a point x is the Z-coordinate of x.
It is natural to connect the maxima of this function to bubbles and compute
the stable manifold of each maximum as a segmentation of the surface into
bubbles. As can be seen in Figure 8, this segmentation corresponds very well
to the human notion of a bubble. Symmetrically, we use the unstable manifolds
of minima to define spikes. Potentially, other functions could be defined on the
envelope surface that would result in a robust segmentation. For example, the
Z-velocity at all of the points on the envelope surface could be incorporated to
capture the fact that bubbles should be moving upwards into the heavy fluid.
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In general, topologically based segmentations are often linked to impor-
tant features: maximal and minimal Z-velocities on the midplanes correspond
to cores of rising and falling sections of fluids; density extrema correspond to
pockets of unmixed fluids. Topological methods are flexible and enable analysis
of a variety of phenomena using the same methodology. Furthermore, the MS-
complex can be computed combinatorially (Edelsbrunner 2003; Bremer 2004),
which translates into provably correct and stable algorithms that are crucial
when dealing with large and complex data.

Multi-Scale analysis and persistence selection. The MS-complex, just
as any other segmentation, captures noise as well as features. We use a simpli-
fication scheme to remove noise and to construct a series of approximations at
decreasing resolution. Unlike many other techniques, topological segmentations
allow a simplification scheme that is optimal in the L∞-norm. One can formu-
late the problem of coarsening a segmentation in the following manner: given a
function f and a segmentation S of the domain of f , what is the minimal change
on f such that S is coarsened? If the segmentation one considers is the MS-
complex of f , then it can be shown (Bremer 2004) that canceling a critical point
pair with persistence p in f requires an approximation f̂ with ||f − f̂ ||∞ ≥ p/2.
Therefore, canceling critical points in order of increasing persistence corresponds
to an L∞-optimal simplification.

Cancellations of critical points can be used both to remove noise and, more
in general, to analyze the trends in the data at multiple scales. This type of
multi-scale analysis is not readily available in classical image processing tech-
niques and constitutes a fundamental advantage of our approach.

For each MS-complex, we compute a sequence of cancellations that opti-
mally simplify the complex down to its minimal configuration. We can thus de-
fine a family of segmentations of the envelope surface ranging from persistence
p = 0.0, where both signal and noise features are segmented, to persistence
p = 1.0 (full function range), where the entire surface is collapsed into a single
topological feature. We can then create statistics showing the number of bubbles
over time using a range of persistence thresholds. These results show that the
mixing behavior can differ significantly across scales. Using the simplification
sequences, we can capture the behavior on all scales without recomputing the
MS-complex. Domain scientists interact with a visualization of the segmented
surface and select an appropriate persistence value based on their physical intu-
ition of a correct segmentation of bubbles.

Results: Bubble Counts and Quantification of Mixing Phases The input data
consists of 758 time-steps, each time-step containing about 5.8GB of density
data defined on a 11523 grid. Our analysis was performed on 68 dual-processor
nodes of a cluster running Linux. For each time-step, we extract an isosurface at
density value 2.98 and compute the Morse-Smale complex with function f set to
the z-coordinate of each point. Isosurface extraction takes about 15 seconds at
early time-steps and about 30 seconds at the late time-steps where the surface
is more complex. Morse-Smale complex computation takes about 2 seconds at
early time-steps and about 25 seconds at late time-steps. We compute a digest
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Figure 8. The plot depicts bubble counts of the envelope surface for three
persistence values. To the right of the plot, the MS-segmentation at three
persistence values for time 700. To the left and below the plot, the bubble
segmentation along the curve of medium persistence at various times. Each
maximum along with the Morse cells of its child-maxima are colored the same.

of all required data from the Morse-Smale complex that allows us to efficiently
calculate bubble counts for any choice of persistence value.

Figure 8 shows bubble counts for three choices of persistence values; the
inset figures show the segmentation of the isosurface into bubbles. Since it was
not clear what persistence value is the “best” choice, our flexible analysis pipeline
supports computation of the MS-complex and resultant bubble count using a
number of different persistence values. We provided scientists with a variety
of visualizations and statistics that they can study to choose an appropriate
persistence that produces results that make sense to them. It is important to
note that the points of inflection, where the slope of each curve changes, occur
at the same time step for all three scales. This fact indicates that the key results
of our analysis are fundamentally insensitive to the choice of persistence value:
the measurements of interest for these data are primarily focused on the trends
of the derivative rather than the absolute value of the bubble count.

After an extensive expert scientific evaluation of results computed from
different persistence values, we settled on a bubble count that corresponds to a
persistence value of 2.39% of the function range at the end of the simulation.
Figure 9, shows the result of this analysis summarized by the final bubble count
curve and its derivative. The plot reveals four phases of the mixing process,
providing for the first time quantification of the mixing rates and transition
times between the different stages.

Feature-based Comparison of Large Eddy Simulations(LES) and Direct Numeri-
cal Simulations(DNS) Our data management and analysis techniques provide
a method to compare two different data sets of the same phenomenon simu-
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Figure 9. Bubble count and its derivative. The derivative curve shows four
regions where the slope is virtually constant, each of which corresponds to
distinct stages of the turbulent mixing process.

lated using different classes of simulations. Large Eddy Simulations (LES) use
smaller resolution meshes and less computational resources than Direct Numer-
ical Simulations (DNS). Grid resolutions for LES capture large-scale effects,
but must model the sub-grid scale effects explicitly running, which can lead
to potential modeling errors. On the other hand, DNS simulations are based
on first-principles of continuum mechanics and therefore not prone to the same
modeling errors. However, DNS has high computational requirements, since it
requires grids with resolutions that must be fine enough to capture physical
effects at all scales.

Validating the results of LES simulations against a corresponding DNS ap-
plied to the same phenomenon is of great importance to scientists. We have
conducted a feature-based comparison that is shown in Figure 10. The LES
grid dimension was 11523 and the DNS grid dimension was 30723. We perform
the analysis as described previously and compute bubble counts for both types
of simulations. After normalizing the counts, we can plot them together and
compare them. Figure 10 shows that the simulations are in close agreement and
produce similar trends in the mixing layer. This result shows that topologically
based analysis provides the basis for performing comparative analysis of data
from different simulations run at different resolutions.

4. Conclusion

While the main product of scientific visualization is visual – images and movies
– its main objective is scientific insight. Simply increasing visualization capacity
to respond to ever-increasing data size and complexity does not necessarily result
in a corresponding increase in insight. We have presented two case studies, one
implementing a high performance exploratory visualization use model, the other
implementing an advanced analytical visualization use model, that emphasize
scientific insight rather than pretty pictures.
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