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Abstract. Scientific datasets obtained by measurement or produced by computational
simulations must be analyzed to understand the phenomenon under study. The analysis
typically requires a mathematically sound definition of the features of interest and robust
algorithms to identify these features, compute statistics about them, and often track them
over time. Because scientific datasets often capture phenomena with multi-scale behaviour, and
almost always contain noise the definitions and algorithms must be designed with sufficient
flexibility and care to allow multi-scale analysis and noise-removal. In this paper, we present
some recent work on topological feature extraction and tracking with applications in molecular
analysis, combustion simulation, and structural analysis of porous materials.

1. Introduction

With rapidly increasing computational power scientists are now able to perform simulations
of many fundamental physical processes at increasing resolution and complexity [8, 7]. The
resulting data must be analyzed to understand the underlying phenomenon. There is a well-
developed research area of visualization and data analysis that addresses this issue and any
survey of the results is beyond the scope of this paper; the interested reader can begin at [17, 11].

This paper describes recent developments in using concepts from topology [15], and Morse
theory [13] to develop robust combinatorial algorithms for feature extraction and tracking. We
emphasize the power of these methods by describing their application in several data analysis
tasks ranging from protein structure analysis to the study of channel structures in porous
materials.

2. Mathematical Background

We need some background from Morse theory [12, 13] and from combinatorial and algebraic
topology [1, 15].

Smooth maps on manifolds. Let f: M — R be a smooth map. A point x € M is a critical point
of f if the gradient of f vanishes at z, and the value f(z) is a critical value. Non-critical points
and non-critical values are called regular points and regular values, respectively. A critical point
is non-degenerate if the Hessian (matrix of second-order partial derivatives) at = is non-singular.
The index of a critical point =, denoted by index z, is the number of negative eigenvalues of the
Hessian. For d = 3 there are four types of non-degenerate critical points: the minima (index
0), the 1-saddles (index 1), the 2-saddles (index 2), and the mazima (index 3). A function f is
Morse if all critical points are non-degenerate with distinct values.



Morse-Smale complex. An integral line is a maximal path on M whose tangent vectors agree
with the gradient of f. The ascending manifold of a critical point x is the union of xz and all
integral lines that start at . The descending manifold of x is defined symmetrically as the union
of a critical point x and all integral lines that end at . One can superimpose the ascending and
descending manifolds of all critical points to create the Morse-Smale complez (or MS complex)
of f [6, 2], see Figure 1(a)—(d). The nodes of this complex are the critical points of f, its arcs
are integral lines starting or ending at saddles and its regions are the non-empty intersections
of ascending and descending 2-manifolds. More details on the definition of the MS-complex on
2-manifold triangle meshes and algorithms to compute it can be found in Bremer et al. [2].
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Figure 1: MS-complex construction, simplification and topologically valid approximation: (a) Morse
function with critical points shown; (b) Ascending manifolds; (c) Descending manifolds; (d) MS-complex;
(e) MS-complex and manifold after simplification. Maxima are solid blue, minima are solid white, and
saddles are mixed.

Sitmplification. It is often useful to simplify an MS-complex to remove noise and to perform
multi-scale function analysis. Following [2], we perform cancellations of arc-connected critical
point pairs to simplify an MS-complex. Cancellations are ranked by their persistence —the
absolute difference in function value between the cancelled critical point pair. Figures 1(e) and
(f) shows an example of a topological simplification and a corresponding approximation of f.

Computation. In practice, one usually deals with piece-wise linear (PL)-functions given at the
vertices of a triangulation. See [2, 3] for a detailed discussion on how to translate concepts from
the generic smooth functions discussed above to PL-functions.

[

Jacobi Sets. We define Jacobi set of two Morse
functions, f,g: M — R; the general definition is found
in [5]. For a regular value ¢ € R, we have the level
set g~!(t) and the restriction of f to this level set,
fi : g7'(t) — R. The Jacobi set of f and g is the
closure of the set of critical points of the functions fi,
for all t € R. The closure operation adds the critical
points of f restricted to level sets at critical values, as Figure 2: Solid and dotted level curves
well as the critical points of g, which form singularities represent functions f and g, respectively.
in these level sets. Figure 2 illustrates the definition by The Jacobi set is the bold solid curve.
showing the Jacobi set of two smooth functions on a portion of the two-dimensional plane. The
Jacobi set of f and g may consist of several components, and in the assumed generic case each
is a closed 1-manifold. In Figure 2, function ¢ is a ramp that grows from left to right and f;
can be considered a time-varying function defined on a line segment. The Jacobi set tracks the
critical points of f; for continuously changing values of ¢.
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3. Feature Extraction: Segmentation, Simplification, and Hierarchies

We describe how the topological concepts and algorithms described in Section 2 are applied in
practical applications ranging from the analysis of proteins to the study of core structures in
high velocity impact simulations.
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Figure 3: Left, detecting semi-rigid components in a protein. (a) Simplified MS-complex with one
minimum (blue), two maxima (red), and four saddles (green). (b) Segmentation based on the simplified
MS-complex. (c) Corresponding semi-rigid components. Right, detecting cavities and protrusions. (d)
The atomic density function: Darker regions correspond to protrusions and lighter regions correspond
to cavities. (e) and (f) Simplified triangulations and their segmentations with approximately 300 and 80
segments, respectively.

3.1. Analysis of protein-protein interaction

In Natarajan et al. [16], we describe a method for segmentation of molecular surfaces to study
semi-rigid structures and the role of cavities and protrusions in protein-protein interactions. We
use the skin surface [4] representation of the protein define a relevant function on this surface
and compute the Morse-smale decomposition of the surface. They use this decomposition in two
applications:

a. Detecting semi-rigid structures. Semi-rigid structures are important in the study of the
so called hinge-motion which occurs when proteins interact. The function for segmentation is
obtained by aligning two conformations of the molecule and computing the distance between
each point in one conformation to its nearest neighbor in the other conformation. Figure 3 left,
shows the simplified MS-complex of this function, and the corresponding semi-rigid components
which are regions associated with a maximum.

b. Detecting cavities and protrusions. Protein interactions typically occur at binding sites
which are geometrically complimentary. The study of cavities and protrusions on the
surfaces of proteins is therefore important to detect potential binding sites. Natarajan
et al. define a variant of the atomic density function originally defined in [14]. As
shown in Figure 3 right, the MS-complex is able to detect protrusions and -cavities,
and the simplification hierarchy allows the user to study the molecule at different scales.

3.2. Core structures in porous materials

The study of structural properties of materials under
stress is important in design and manufacturing
applications. In Gyulassy et al. [9], we use the MS-
complex to analyze stable channel structures from an
atomistic simulation of a porous solid under impact with
a high density projectile. We present two methods to
construct the Morse-Smale complex. The first method

constructs a standard distance field from a given
interface surface embedded within the domain, but may
produce many spurious critical points slowing down the
MS-complex computation. The second method creates
a better distance field by advancing a front from the
original surface in a controlled manner, ensuring that
the field created is topologically clean leading to a fast
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Figure 4: Channel structures in porous
media. The green iso-surface separates
solid material and empty space. The red
curves connecting maxima and 2-saddles
represent channel structure cores.



MS-complex computation. Figure 4 shows the interface between solid material and empty space
and the core of the channel structures.

4. Feature tracking

Temporal tracking of features in simulation data is important to understand how the
phenomenon under study evolves over time. In this section, we briefly describe two techniques
for tracking topological features. The first employs Jacobi sets to track critical points over time,
the second uses distance measures on graphs to track channel structures in a porous medium.

Tracking critical points with Jacobi sets. We can defined Jacobi sets for a time-varying function
f:M xR — R, by introducing an auxiliary function for time as g : Ml x R — R defined by
g(x,t) = t. From the general definition of the Jacobi set, the level set g~!(t) = M x ¢, and the
restriction of f to this level set is f;: Ml x ¢ — R. The Jacobi set then defines the trajectory of
the critical points of f; with varying time.

We implement the algorithm described in Edelsbrunner and Harer [5] to compute the Jacobi set
for piecewise-linear functions. We first connect the sample points into a simplicial complex and
linearly interpolate the function values within each simplex to define the function for space-time.
Figure 5(a) shows the Jacobi set for a 2D combustion simulation dataset. The full-resolution
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Figure 5: (a) Jacobi set of 2D combustion simulation. Full-resolution (left), simplified (right). The
textured quad shows the function at time ¢ = 0, with time increasing left to right within each cube.
Maxima are red, saddles are green, and minima are blue. (b) Jacobi set simplification. Top left, a time-
varying 1D function. Top right, view of level-sets and the Jacobi set (red). Bottom left, the Jacobi set
with maxima and minima marked at discrete time-steps. Bottom middle, cancelation of a critical point
pair. Bottom right, removal of a small loop.

Jacobi set (Figure 5(a) left) contains dense noisy regions which we identify and clean to obtain
the simplification (Figure 5(a) right). As shown in Figure 5(b), we use the Morse-Smale complex
of f; at discrete time-steps to pair critical points, cancel pairs below a persistence threshold,
and remove small loops of the Jacobi set that lie entirely within successive time-steps.

Tracking channel structures in a porous solid. In [9], we track the channel structures in a
porous medium under impact for successive time-steps of the simulation to study how the impact
affects the material. The tracking is performed by computing a distance measure between each
point on the graph structure of the channel at time ¢ with the graph at time ¢ + 1. We use
several different criteria to evaluate the tracking including the two-sided Hausdorff distance, and
the average minimum distance. Figure 6 shows a visualization of three tracking operations at
successive pairs of time-steps 500, 12750, 25500, and 51000. The red and blue lines show the
displacement arcs between corresponding arcs. The displacements correlate well with the fact



Figure 6: Tracking core structures between time-steps 500 and 12750 (left), 12750 and 25500 (middle),
5500 and 51000 (right). Red and blue lines indicate regions of greater displacement.

that the projectile impacts the solid on the left face and the crater expands towards the right,
and that it is localized because the medium absorbs the shock wave efficiently.

5. Conclusion

We present recent research on topological feature extraction and tracking applied to the analysis
of scientific datasets. Using notions from smooth Morse theory adapted to piecewise-linear
functions we have developed a suit of techniques that allow us to: mathematically define features
in a large variety of different applications; robustly extract these feature even from very large
data sets; and organize them into a multi-scale hierarchy with guaranteed error bounds. In the
future, we aim to extend our techniques to higher dimensional scalar functions and vector fields.
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