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Abstract

Most Monte Carlo rendering algorithms rely on importance sampling to reduce the variance of estimates. Impor-
tance sampling is efficient when the proposal sample distribution is well-suited to the form of the integrand but
fails otherwise. The main reason is that the sample location information is not exploited. All sample values are
given the same importance regardless of their proximity to one another. Two samples falling in a similar location
will have equal importance whereas they are likely to contain redundant information. The Bayesian approach we
propose in this paper uses both the location and value of the data to infer an integral value based on a prior
probabilistic model of the integrand. The Bayesian estimate depends only on the sample values and locations, and
not how these samples have been chosen. We show how this theory can be applied to the final gathering problem
and present results that clearly demonstrate the benefits of Bayesian Monte Carlo.
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1. Introduction

Monte Carlo integration has now become an essential tool in
the field of global illumination. It allows accurate simulation
of light transport mechanisms and leads to photorealistic im-
ages. However, its computational cost remains high due to the
huge number of ray-traced samples that need to be collected
before reaching an acceptable noise level. This problem has
given rise to an extensive literature of which many of the
proposed solutions are based on importance sampling and/or
(to a less extent) control variates. Both techniques try to ex-
ploit some prior knowledge of the integrand so as to build
an approximating function. This approximating function is
then used either to optimize samples distribution (importance
sampling) or to extract a known deterministic part of the in-
tegrand so as to reduce its variance.

In [O’H87], O’Hagan raises two fundamental objections to
the importance sampling procedure. First, the estimator de-
pends on the arbitrary choice of the sampling density. There-
fore, the same set of observed integrand sample values will
lead to different estimates depending on the chosen proposal
distribution, which violates the Likehood Principle [Bir62].
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Briefly, the Likehood Principle states that ‘in the inference
about 0, after x is observed, all relevant experimental infor-
mation is contained in the likelihood function (p(x | 0)) for
the observed x’. Consequently, the rules governing the data
collection process are irrelevant for computing the estimate.
Even though the choice of the sampling density is guided
by prior information we have on the integrand, the objection
still holds as it remains some freedom on the choice of the
sampling density.

The second objection is that Monte Carlo procedures
ignore the sample locations, only the sample values of
the integrand are used. Therefore, two samples falling on
the same or close location will have equal importance
in the estimation process, whereas the second sample brings
no extra information. Of course, such occurrence can be
made unlikely with stratification or even impossible with
quasi-Monte Carlo (QMC) but nonetheless, the fact remains
that classical Monte Carlo wastes important information.

To avoid these inconsistencies and allow better estimates,
O’Hagan turns the problem of evaluating the integral into
a Bayesian inference problem [O’H91]. To this end, he
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(a) Classical Monte Carlo

(b) Bayesian Monte Carlo

Figure 1: Cornell Box rendering (Indirect only). n = 256.
To obtain the same quality, Monte Carlo integration would
require more than 900 rays.

assumes a Gaussian Process (GP) behavior for the integrand
which leads to a new form of quadrature called ‘Bayes-
Hermite quadrature’. His results have been further gener-
alized and applied in various domains related to Machine
Learning theory under the generic name of ‘Bayesian Monte
Carlo’ (BMC) [PHR06, KNKSO08].

The goal of this paper is to show how the BMC method can
be applied to global illumination models while trying to ob-
tain the best compromise between computational complexity
and effective noise reduction. However, as BMC significantly
departs from conventional MC, it would be too long to an-
alyze and compare in details all theoretical aspects and im-
plementation options in this paper. Besides, many research
directions need to be investigated before assessing the full
potential of this new approach. Therefore, our presentation
of the theoretical background only covers the minimum nec-
essary to understand the application to global illumination
and, although only one implementation method is described,
we will briefly present alternative approaches.

We will first present a brief introduction to the theoretical
background of BMC integration and will discuss in general
the important implementation issues and options. Then, we
will present a first attempt to apply BMC to compute the
integral involved in the final gathering phase of a photon
mapping algorithm. We show how a GP model can be built in
this particular case and how the quadrature coefficients can
be derived from this model. We then address the problem
of optimal sampling and hyperparameters estimation, and
present our solutions to these problems. As we will see,
we have obtained very promising results despite suboptimal
hyperparameters (Figure 1).

2. Related Work

Although the theory of Bayesian Quadrature has been known
since 1991 [O’H91], itis only recently that it has been put into
practice (e.g. [PHR06, KNKS08]) and to the authors’ knowl-

edge, no research in this direction has yet been reported in the
computer graphics literature. In the field of global illumina-
tion, most research works are based on importance sampling
and although this variance reduction technique can be applied
to many cases (e.g. [CAEOS]), its efficiency is questionable
when prior information does not allow to find a well-focused
proposal distribution. This is particularly noticeable when
diffuse reflection is involved since the cosine distribution
law gives rise to rather scattered sampling directions.

The control variates method has been proposed to supple-
ment importance sampling by introducing a correlated func-
tion which approximates the integrand with a constant differ-
ence term [LW94]. In multiple importance sampling (MIS),
the control variate estimate is built with the same component
functions as the ones used in the mixture probability density
functions [OZ00, FCH*06, Vea97]. When control variates
is used without importance sampling, finding the optimal
mixture coefficients amounts to a least square fitting of the
integrand as shown in [HLOO04]. There are some similarities
with BMC with regard to this point since BMC also involves a
regression step. However, as discussed in [RW06], Bayesian
regression differs in that it is a non-parametric method, which
means (in brief) that the basis functions of the feature space
and their associated weights do not appear explicitly. Con-
sequently, the computational complexity does not depend on
the dimension of the feature space but on the size of the
sample set only. Actually, the dimension of the feature space
implicitly involved in a Bayesian regression may be infinite.

3. Issues at Stake

In [RGO2], Rasmussen and Ghahramani have shown that
BMC can significantly outperform any classical importance
sampling method if appropriate prior knowledge is used.
However, such ideal conditions are rarely met in the context
of global illumination. The main reason is that the GP prior
used in the BMC method is very effective in reducing the
estimator variance when the integrand is a smooth function
of the input variables. This smooth integrand behavior is rare
in global illumination models mainly because of the sharp
changes of illumination at object boundaries [DLAWO1]. We
will see that the features of illumination statistics can be taken
into account in the GP model so as to alleviate the effects of
discontinuities. Surprisingly, we have already obtained good
results with a very simple GP model and largely subopti-
mal hyperparameters, which raises hopes of wide margin for
improvement.

4. Background Theory
4.1. Notation

A generic point in the D dimensional unit cube [0, 1)? is

denoted by x = (x', ..., xP)" while a random point in the
same space is denoted X = (X', ..., XP)" and a point used
© 2009 The Authors
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in an integration rule is X;. In conventional Monte Carlo
methods, X; is a sample of a random vector X drawn from a
given density.

4.2. Bayesian quadrature equations

We consider the problem of computing the integral / of the
product of a function f(x) with a weight function p(x), both
functions defined on the D dimensional unit cube [0, 1)”:

I= /f(x)p(x)dx with x € [0, 1)°. )

Here and elsewhere, integrals without explicit range are un-
derstood to be over [0, 1)°. Typically, p(x) is known under its
analytical form whereas f(x) can only be evaluated numer-
ically or through computer simulation. p(x) is not required
to be a probability density function, however we will assume

that it is normalized:
/ px)dx = 1.

In Bayesian Monte Carlo (BMC) the problem of evaluat-
ing the integral in Equation (1) is turned into a Bayesian
inference problem, which allows avoiding the inconsisten-
cies discussed in Section 1 and leads to a better estimate.
As proposed by O’Hagan in [O’H91], BMC is based on the
following reasoning: f(x) is considered as random simply
because it is unknown (and thus uncertain) before its eval-
uation. This view may seem to be somewhat inappropriate
but it is totally consistent with the Bayesian approach that
all forms of uncertainty can be modeled by probabilities. For
this purpose, we will put a prior on f(x) by using a GP. De-
tailed presentation of GPs is beyond the scope of this paper, a
comprehensive introduction to GPs can be found in [RW06].
Formally, a GP is a collection of random variables, any finite
number of which have a joint Gaussian distribution. A GP is
completely defined by its mean function f(x) and its covari-
ance function k(x, x) which depends only on the input x, i.e.
the sample locations:

fx) = E[f(x)]
k(x, x') = E[(f(®) = fFON(f(X) = f(xX))]

and will be denoted by
&) ~ GPLf(x), k(x,x)].

(@)

The choice of the covariance function k(x, xX") allows us to
introduce prior knowledge on the smoothness properties of
the integrand. However, this choice is not arbitrary as the co-
variance function must be a symmetric (k(x, x') = k(X', X))
and positive semidefinite kernel (see [RWO06] p. 80 for de-
tails). A covariance function is stationary when it is invari-
ant to translation, i.e. k(x, X)) = k(x — x’). Moreover, the
covariance function is isotropic when it is a function only of
r = |x — X/|. In this case, these are also known as radial ba-
sis functions (RBFs). Furthermore, Bochner’s theorem states

that a stationary covariance function is positive semidefinite
if and only if its Fourier transform is non-negative [RWO06].

A common choice of the stationary covariance function is
the squared exponential (SE) covariance function:

1 2o [ @ _ @\?
kxix) =wiexp i —> D (] 1. Q)
d

d=1

where the w;’s are the hyperparameters of the model. With
this function, close function samples are highly correlated
whereas k(X;, X;) = 0 for distant samples, which means that
the function values f(x;) and f(x;) are almost indepen-
dent. Let us note that wé = k(x, x) = Var[ f(x)]. The other
hyperparameters wy, ..., wp are the lengthscales of the indi-
vidual input dimensions. The SE covariance function is thus
isotropic when all the lengthscales are equal. A GP having a
SE covariance function has mean square derivatives of all or-
ders and is thus very smooth. This strong smoothness might
not be appropriate for illumination models. The Matérn class
[RWO06] of covariance functions have been recommended by
Stein when such smoothness is unrealistic. Although we have
already obtained good results with SE covariance function in
the application described below, we will consider the Matérn
class option in future works.

Now that we have specified the GP prior that models our
beliefs about f(x), let us suppose that we are provided with a
set of noisy samples D = {(X;, Y;)|i =1, ...,n} where Y;
is the observed value of f at point X;:

Yi = f(X) + &

and the ¢; are samples of an independent, identically dis-
tributed Gaussian distribution with zero mean and variance
o2. Then, in application of the Bayes’ rule, the posterior
process is also a GP with mean and covariance given by
[RWO06]:

E[fx)|D) = f(x) +kx) Q"(Y - F)
Cov[f(x), f(x)| D] = k(x,x) — k(x)' 0 'k(x)

where

k(x) = kX1, %), ..., k(X,, X))’
Q= (K+0’l)
Kij = kX, X;) with(i, j) € [1,n]?
Y=(,....0)
F=(fX,.... fX),
where [, is the identity matrix. Equation (4) gives the ex-
pected value (or the mean prediction) of f for an unseen
input x given the observed data D. This particular form of re-
gression is called Bayesian regression. When the covariance
function is a RBF, Bayesian Regression is not to be confused

with RBF non-linear regression (see [Her04, RW06] for more
details).
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From this, we can derive the posterior distribution of the
integral / given by Equation (1). As integration is a linear
operation, the distribution of / is Gaussian with mean and
variance [O’H91]:

EI|D)=T+720 Y -F) 5)

Var(I | D)=V —2' Q07 'z, 6)
where
P = [ Feopeox
z= / K(x) p(x)dx (7
V= / f k(x, X) p(x) p(x )dxdx’

The estimate of /, given our GP prior and the observed data
D, is then fzyc = E(I | D). Note that / and V are respectively
the prior mean and variance of /, i.e. the fBMC estimate and
its variance when n = 0 in Equations (5) and (6).

The z vector can also be expressed in terms of the function
f.(x') given by:

ﬁ@»=fkmxm@Mx ®)

Then, we have

2= (f.X1), ..., f:(X)

and Equation (7) can be rewritten as

V= / J:(X)p(x)dx. (C)]

In Equation (6), the estimate Var(/ | D) is based only on prior
expectation since it depends on sampling points X; but not
on the sample values Y;.

Equation (5) can also be rewritten as

EI|D)=I+cY (10)

where
ly=1-cF (11)
c=0"'z (12)

Equation (10) expresses a quadrature rule in which c is the
vector of quadrature coefficients. This form of quadrature is
called Bayesian quadrature and Bayes-Hermite quadrature
when p(x) is a Gaussian distribution. In this latter case or
when p(x) is uniform, the quadrature coefficients can be
computed through a closed-form solution [O’H91].

4.3. Overview of the BMC method

The first problem that we have to solve in implementing the
BMC method is how to choose the mean function and the co-
variance function of the GP model associated with f(x). The
first point is addressed in the following section and we have
already discussed in the above section the general properties
of covariance functions and their impact on the smoothness
assumption. The problem of hyperparameters selection is
specifically addressed in Section 4.3.3. Given a set of sam-
ples D, we will then need to compute the vector of quadra-
ture coefficients ¢ with Equation (12) and the / estimate with
Equations (11) and (10). The main computing task is repre-
sented by Equation (12) which involves the inversion of the
QO matrix and the computation of the z vector using Equa-
tion (8). We will see in the following how to solve this prob-
lem for our application. Let us recall that with the BMC
method, samples can be drawn from arbitrary distributions
but the sampling strategy has a significant effect on the vari-
ance as discussed in Sections 4.3.2 and 5.4.

4.3.1. Finding a mean function

The GP prior assumes that we know a mean function f(x).
This mean function does not need to be an accurate estimate
of the statistical mean at any point X. A rough approximation
of f(x) is often sufficient since the generated bias is negli-
gible with the sample sets sizes used in practice. In the con-
text of global illumination, well-known CG techniques can
be used to determine such a function (e.g. radiance cache,
spherical harmonics, etc.). Depending on how well f(x) can
model the discontinuities of f(x), the high frequency com-
ponents of the difference f(x) — f(x) can be reduced, which
allows the smoothing kernel of the GP model to more faith-
fully fit the observed data statistics. Note also that there are
some similarities with the approximating function used in
the control variates method and techniques such as the 5D
tree proposed in [LW95] can be used as well.

Another alternative offered by the GP theory is to infer
F(x) from the observed data D as proposed in [RWO06]. To
this end, we write f(x) as:

f(x) =hx)'B,

where h(x) is a given set of m basis fuctions (such as spher-
ical harmonic basis) and 8 are unknown parameters. The
derivation of the vector of coefficients 8 can be found in
[RWO06]. This solution results in an additional variance term
but this term decreases rapidly as n increases. For the ap-
plication described in this paper, we have chosen a constant
mean function. We will see that this simple solution gives
good results with the sample set sizes we use. However, it
is probable that a more refined model of the mean function
will be necessary with adaptive techniques allowing smaller
sample set sizes (cf. discussion in Section 6.4).
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4.3.2. Optimal sampling

One important advantage of BMC over importance sampling
is that samples do not need to be drawn from predefined
distributions. However, some distributions will be more ef-
ficient than others. The space filling designs of quasi-Monte
Carlo (QMC) methods [Nie92, HLO04] can be used but their
optimality criteria correspond to special cases of Bayesian
optimal designs and are mostly based on intuitive considera-
tions. A more appropriate technique consists in choosing the
sampling points X, ..., X, to minimize the expected vari-
ance Var(/ | D) [O’H91, Min00]. We have used this method
in our work (cf. 5.4). Note however that this design will be
based on prior expectation only.

4.3.3. Adaptation of hyperparameters

The GP prior defined above assumes that we know the hy-
perparameters of the model. In the case of the SE covariance
function (Equation (3)), the vector of hyperparameters is

¥ = (o, woy, Wy, ..., wp),
where o2 is the variance of the additive noise. The choice of
these hyperparameters must reflect our beliefs on the variabil-
ity and the coherence of the function f(x) to be integrated.
In [RWO06], Rasmussen suggests a maximum likehood solu-
tion that consists in finding ¢ that maximizes the marginal
likehood:

D= argmax[p(D | 9)].

However, this solution is costly because it requires that the
hyperparameters be computed at each integral evaluation as
the marginal likehood maximization must be performed inde-
pendently for each sample set D. Another solution is to find
the hyperparameters that best fit the real covariance func-
tion built from a set of training data. This can be done at a
global level for the whole scene or a specific view but this
choice may be locally suboptimal. We have chosen this last
solution in the application presented in this paper. However
a simplified version of the maximum likehood solution will
be investigated in future works.

5. Application to Final Gathering
5.1. The irradiance integral

We have chosen final gathering as a case study to show the
benefit of BMC because it is typically a case for which basic
Monte Carlo integration methods work poorly. As regards
importance sampling, the only adequate proposal distribu-
tion that can be extracted from the analytical part of the
integrand is the cosine distribution which leads to highly
scattered samples. This situation does not allow us to faith-
fully represent the incident radiance. This problem is solved
by the BMC approach which uses a GP to model the radiance

variations between sample points, and consequently yields a
better estimate of the integral.

Of course, in the Monte Carlo method, more adequate
distributions can be built from observed data as in [CAE08].
As for BMC, equivalent techniques (such as active learning)
exist but they are difficult to implement in this context.

Briefly, the final gathering is the final step of the photon
mapping method. It consists in computing the irradiance of
visible surfaces by casting rays from these surfaces so as to
capture the distribution of incident light. The irradiance at a
given point P of a surface S is given by the integral:

ES(P)=/ L6, ¢)cosbdS, (13)
Qox

where 0 and ¢ define the direction of a ray of incident light,
dS is the elementary solid angle, L(0, ¢) is the radiance
of the surface intersected by this ray and €2, is the solid
angle representing the hemisphere centered at P and located
above the considered surface. The couple (6, ¢) defines the
spherical coordinates of a point 1 on the unit sphere centered
at P. The origin of this coordinate system is P and its z axis
coincides with the normal N to the surface at point P. By
expanding d2 in terms of (6, ¢), we obtain:

2 El
E,(P)= / / L0, ¢p)cosO sinf dod¢. (14)
#=0 Jo=0

To obtain an integral in the same form as Equation (1), we
rewrite Equation (14) as

2 %
E(P)=n f / L©. $)p(®. $)dodg.  (15)
#=0Jo=0

where

cos 6 sin 6 _ sin 26

p@, ¢) = = (16)
T 2

is a normalized weight function.

5.2. A Gaussian Process model for incident illumination

As discussed in Section 4.3, the first step to implement the
BMC method is to define the GP model associated with the
‘unknown’ part of the integrand of Equation (15), namely
the GP mean and covariance functions associated with the
incident radiance L(8, ¢). The role and the properties of
these functions has already been presented in Sections 4.2
and 4.3.1. Our choice of mean function will be discussed in
Section 5.7.1 As regards the covariance function, it must be
isotropic (all dimensions are equivalent) and positive definite
on the unit sphere. Several functions having these properties
have been proposed in the literature (e.g. [RW06]). We have
obtained good results with the isotropic form of the SE co-
variance function defined in Equation (3) despite its strong
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smoothing effect. It is given by the following equation:

2
k(r) = w(z) exp <_ﬁ> s (17)

where r is the Euclidean distance between two points 1; and
1, on the unit sphere, and / is the lengthscale hyperparameter.
Let us call d the geodesic distance (i.e. the angle between the
directions defined by 1, and 7,). Then, we have

d = arccos(n; - 1n2), (18)
and

d
r=\/2—2n1-r)2=251n5 0<d<nm

r? = 2(1 — cosd).

19)

Using Equation (19), the covariance function given by Equa-
tion (17) can be expressed as a function of the geodesic
distance d:

k(d) = wé exp <cosldiz—l> . (20)

Equation (18) can be expressed in terms of spherical coordi-
nates as follows:

cosd = sin B sin 6, cos(¢p, — ¢1) + cos b cos B, (21)

where (0, ¢1) and (6, ¢,) are the spherical coordinates of
n, and 10, respectively. The covariance function can then be
expressed as a function of the spherical coordinates of 7; and
1, as follows:

k(n, m2) = wiexp
y <sin 6 sin 6, cos(¢; — ¢,) + cosB; cosb, — 1 )

12
(22)

5.3. Determination of the quadrature coefficients

Equation (22) allows us to build the covariance matrix Q for
a set of sampling directions D = {ny, ..., n,}.

To compute the quadrature coefficients given by Equation
(10), we also need to compute the coefficients z; = f,(1;) of
the z vector for each sample n; of D. Using Equations (16),
(20) and (21), the expression of the f, function of Equa-
tion (8), becomes

1 2 Z )
femi) = f(6;, ¢i) = 7/ / k(n, n;)sin260 dod¢,
T J¢=0 Jo=0
(23)
where (6;, ¢;) are the spherical coordinates of a sampling
direction 7;. Let us observe that in Equation (21), the variable

¢; only appears in the cos(¢ — ¢;) term. Since the integration
domain covers a whole period of the cos(¢ — ¢;) function,

z; is independent of ¢;:

10, i) = £(6;,0) = f2(6:).

Moreover, since the dependence of the covariance function
as regards ¢, and ¢, is only contained in the term cos(¢, —
¢1) (cf. Equation (20) and (21)), the covariance matrix Q is
unchanged if the set of sampling directions D = {n;, ..., n,}
is rotated around the z axis. As the z; coefficients depend
only on 6;, this means that the whole vector of quadrature
coefficients ¢ = Q~'z is also unchanged. This property will
be very useful to generate different sample sets while keeping
the same vector of quadrature coefficients.

5.4. Optimal sampling for the diffuse component

The variance function can be computed from (6). In this
equation, V can be derived from Equations (9) and (23):

2 s T
V= 1 /2 f:(60)sin26 dOd¢ = ’ f:(6)sin26 d6.
27 Jy—0Jo=o 0=0
As mentioned in Section 4.3.2, optimum sample sets for
given values of [, o, wy and n (the size of the sample set)
can be computed by finding the samples locations that min-
imize the variance function of Equation (6). Compared to a
uniform distribution generated by the spiral points algorithm
of Rakhmanov et al [SK97], optimized sets roughly bring a
6 dB variance reduction (as computed from Equation (6)).

As expected, the minimization process becomes very com-
putationally demanding when n reaches one hundred or more
samples. To speed up the computation, we only specify the
0 values as input arguments to the variance function. This
choice is sensible since the distribution in 6 is dominant
given the respective roles of 6 and ¢ in the irradiance in-
tegral. If we pursue this line of reasoning further, we can
choose to act on a global 6 distribution function rather than
on individual 6 coordinates of samples. If this distribution
function is modeled by a polynomial of degree p, this will
reduce the number of input variables to p + 1. To generate
the samples locations, we use a slightly modified version of
the spiral points algorithm:

dphi = pi*(3-sqrt(5));

phi =0,

dz = 1./n;

z = 1- dz/2;

fork=1mn
zv = polyval(dcoeff,z); % z coord
thetas (k) = acos(min(zv,1)); % Theta
phis (k) =mod(phi,2*pi); % Phi

z=1z -dz;
phi = phi + dphi;
end

In the standard spiral points algorithm, the z coordinate
of points are uniformly distributed. In our algorithm, this
linear distribution is modified by the polynomial function
polyval(). The input variables for the optimizer are then
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s

5

as™ an

(a) lengthscale = 0.1 (b) lengthscale = 0.2

Figure 2: Optimized sample sets of 128 points.

the coefficients dcoeff of the polynomial. The algorithm is
initialized with the uniform distribution, i.e. the monomial
y =x. A degree 4 or 5 is sufficient in practice. We have
used the Quasi-Newton line search algorithm as optimizer.
The loss in variance reduction is at worse 1.8 dB compared
to the direct method while the speed of computation is one
hundred times faster for large sample sets. Examples of op-
timized sample sets are shown in Figure 2. Observe that for
| = 0.1 (Figure 2(a)), there are fewer samples at grazing an-
gles since with this short lengthscale, sample points need to
be closer to each other and the optimizer tends to trade off
sampling directions with low weight (i.e. defined by cos(9)
weight function) for high weight sampling directions. This
behavior is similar to importance sampling, however, in op-
timized sample sets, the effect of the cosine weight function
tends to be counterbalanced by the covariance function as
the lengthscale increases as shown in Figure 2(b).

5.5. Behavior in case of radiance function
discontinuities

As discussed in Section 4.2, the smoothness assumption for
the integrand is modeled by the covariance function de-
fined by Equation (2) and its strength is characterized by
the lengthscale hyperparameter. Besides, as the power spec-
trum of a signal is obtained by taking the Fourier transform
of its covariance function, we can also interpret the effect
of lengthscale parameter in the frequency domain. Fixing a
lengthscale value amounts to assuming that the bandwidth of
the difference function L(.) — L(.) is limited. Recall however
that this interpretation is valid only if the covariance function
is stationary.

In this section, we analyze the behavior of the BMC es-
timator of the irradiance integral when the radiance func-
tion is highly discontinuous. For this purpose, we have
computed the BMC estimate of the irradiance integral of
Equation (13) when the radiance function is a step func-
tion in 6 (L(0, ¢) = s(0), V ¢) and taking a constant mean
function L = ﬁ fQZz L(6, $)d2. We have also computed
the predicted radiance function according to the regression
formula of Equation (4).

The results presented in Figure 3 (a) to (d) use the two
sample sets shown in Figure 2. We can observe that the

— _ .
4 </
-'"I L " L 1] " L] L na " .°'ﬂ o L L3 " " L 1 na "
{a) Stepat @ =m/8 {b) Step at 8 =3n/8
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Black line Original incident radiance L(8,0)

Green line Mean value of incident radiance

Red line Radiance prediction with [ = 0.1 for figures (a) to
(d) and [ = 0.53 for figures (e) and (f)

Blue line Radiance prediction with [ = 0.2

RMSE Root mean squared error of the radiance prediction

IERR Relative error of the integral estimate

The integral value is 0.1464 in cases (a), (b), (e), (f) and

0.8536 in cases (c) and (d).

Figure 3: Behavior in case of a step radiance function.

RMSE of the radiance prediction is generally high whereas
the error on the integral estimate remains quite low except
for some extreme cases. Moreover, when comparing case (a)
and (c) for [ = 0.1, we can see that the prediction RMSE
is much greater for case (c) than for case (d) whereas the
order is reversed as regards /ERR. This behavior is due to
the particular sample points distribution of optimized sets.
As discussed in Section 5.4, the optimizing process tends to
gradually allocate more points near the pole than near the
equator and this is particularly well visible in Figure 2 when
| = 0.1. Therefore, the prediction error is high at grazing
angles but this has little effect on the integral estimate because
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of the weight function contribution. In cases (b) and (c),
observe that when 0 is close to 7 /2, the predicted radiance
approaches the mean value because the sample points are
too sparse and the effect of the covariance function becomes
negligible in Equation (4).

Cases (a) and (d) are the most critical ones because the
step occurs near the pole where the weight function has high
values. Let us note that the longest lengthscale (/ = 0.2)
corresponds roughly to a geodesic distance of 7 /8, which
is also the length of the step function of cases (a) and (d).
In these cases, the [ = 0.1 optimized design provides much
better estimate because the smoothness assumption is less
strong (i.e. the assumed signal bandwidth is higher) and also
because the optimizer has allocated more sample points near
the pole as explained in Section 5.4. Let us note also that in
both these cases, the choice of / has a much stronger impact
on /ERR than on RMSE. In case (b) with / = 0.1, the sample
points are too sparse at grazing angles to provide a good
estimate.

Cases (e) and (f) show the results obtained with the opti-
mal hyperparameter values (and associated optimal sample
set) used for the rendering of the Sibernik Cathedral shown
in Figure 9. The relatively high value of the optimal ¢ hyper-
parameter (i.e. the standard deviation of the additive noise ¢)
has the effect of smoothing out high frequency components
as explained in [RWO06], which reduces the ringings. The
estimate of the irradiance integral remains good despite this
strong smoothing effect and is even improved compared to
case (a). As integration is inherently a low-pass filtering op-
eration, smoothing out high frequency components does not
affect too much the integral estimate. Another interpretation
of this hyperparameter settings is to consider that the high
frequency components of the original signal are included in
the additive noise €.

All these observations clearly show the importance of op-
timizing the design (sample points location, hyperparamaters
values and mean function) according to the integral estimate
and not the radiance function prediction.

5.6. Discussion on implementation strategies

Basically, two implementation strategies are possible. The
first one consists in adapting the sampling directions and the
hyperparameters values at each irradiance integral evaluation
so as to obtain the least possible variance and use the least
possible number of samples. This solution is costly because
it will require computing the quadrature coefficients at each
point P, which is O(n®) in complexity due to the inversion
of the Q matrix.

Another possible strategy is to precompute sample sets
that closely minimize the expected variance given by Equa-
tion (6). The quadrature coefficients associated with these
sets can then be precomputed for the whole scene. In this case,

a set of globally optimal hyperparameters must be selected at
the scene level. This solution will be locally sub-optimal in
terms of number of samples and hyperparameters values but
it will avoid computing the quadrature coefficients at each
integral evaluation. Another drawback of this solution is that
it does not allow to take advantage of the freedom in samples
distribution (recall that in Bayesian Monte Carlo, samples do
not need to be drawn from a predefined distribution).

A combination of the two methods is possible. For ex-
ample, we could take a precomputed optimal distribution
and then supplement it with additional samples in direction
of light sources. The obtained BMC estimate remains unbi-
ased as BMC is independent of sample distribution. In the
implementation proposed in this paper, we have only used
precomputed sample sets, other alternatives will be studied
in the future.

5.7. Implementation details

Using Equations (5) and (15), the BMC estimate Epuc of the
irradiance value E at each visible point P can be written as:

Epyc=E+7m1 20 (Y -TF) (24)

where

2 % B
Een / Fypdode
P

=0 JO=0
n= 0.9
in(26
p(n) = S“;( ),
JT

For a given set of directions over the hemisphere D =
{(m;, Y)) | i=1,...,n}, Y is the incoming radiance from
direction n;. This radiance is computed using a query to a
photon map. £ can be seen as an a priori estimate of the
irradiance, deduced from the prior mean f.

We have shown that BMC integration depends on the GP
model of the radiance function L(6, ¢). In order to perform
BMC integration, we need to determine the mean function f
and the hyperparameters values of the GP model wy, / and
o.

5.7.1. Determination of the mean function

As explained in Section 4.3.1, BMC allows us to infer f from
the observed data D. The choice of f impacts the variance of
BMC estimate, but the effect of this additional term decreases
rapidly as n increases and/or the value of / increases. When
n is small or when the chosen value of [/ is not coherent
with the data, the choice of f will have a large impact on
Epvec. Ultimately, when /! = 0, z is the null vector and Equa-
tion (24) gives

Eope=E=r / Fanp(dn,
Q
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which can be biased. As the determination of the hyperpa-
rameters may be costly and/or inaccurate, we want to choose
f such that in extreme cases, the BMC estimate Epyc is
the same as the classical Monte Carlo (MC) estimate Ejc
(computed from Equation (13)):

. 2
Eye == f(n) cos(6)).

Note that when f is constant, £ = 7 f. In order to have a
simple worst-case unbiased BMC estimator, we take f as
a constant function such that f = Eyc/m. When [ = 0, we
have

EBMC=E=7T]E=EMC

Hence, in extremes cases, our estimate is equivalent to the
classical Monte Carlo estimate. Note that the previous equa-
tions hold only for uniformly distributed samples. When us-
ing cosine importance sampling, the equation used to com-
pute Eyc is the corresponding Monte Carlo estimator:

. b
Eyc = — > F@).

5.7.2. Determination of the hyperparameters

We chose the covariance function k(x, x’) as the square ex-
ponential function, parameterized by / and wy. However, the
quadrature coefficients ¢ = Q~'z do not depend on the value
of wj directly but on the ratio o?/w3. Therefore, the result
of BMC integration depends only on the values of the hy-
perparameters  and 0> = o2 /w3. In the following, we will
consider that w = 1 and 0 = 0%,

In order to determine the impact of the choice of [ and o2
on the BMC estimate, we have studied the behavior of BMC
integration for a given point P in a classical diffuse Cornell
Box scene. We computed the irradiance E at point P using
MC and BMC integration. We performed 2000 integrations
for each method and computed the variance of both estima-
tors. Figure 4 shows the gain in quality obtained (in terms
of variance reduction) with BMC integration compared to
MC integration. Because of the choice we made for £, when
| = 0 the variance of the BMC estimate is the same as that
of the MC estimate. We can see that the optimal values for
the hyperparameters are / &~ 0.2 and 0> & 0.3. Note that even
with significant deviations from these optimum values, BMC
performs better than MC. We did the same study for several
visible points in the scene, and found that BMC integration
outperforms MC integration. Of course, the optimal values
obtained for / and o' were different at each point.

As explained in Section 4.3.3, finding the optimal hyper-
parameters that maximize the marginal likehood is costly. We
prefer determining the hyperparameters that best fit the co-
variance function estimated at P from training data because
this solution can be extended at a scene level as explained
below. Figure 5 shows k(d), the computed covariance func-

-"5-‘\\ —w— Monte Carlo
PR - - —BMC, 0= 0.1
g ——BMC, ¢%=02
s T ",'. s BMIC, €%= 0.3
E ast k)

8 at "u“
Fasl k!
° A

; 3] 3F ;6% LT L]

Figure 4: Gain in quality achieved by BMC for different
values of 1 and o, at a fixed point P within the Cornell Box

scene (n = 256).
COMPARD COVETance
ki) with w = 0.0062, 02615

107

Figure 5: Covariance curve fitting and corresponding in-
coming radiance function in (¢, 6) coordinate space.

tion of the incoming radiance at point P. Using least-square
fitting applied to the model given by Equation (20), we
obtain wi = 6.2107 and I = 0.2615. Since o is related
to the divergence between the model and the actual data, we
propose

o & [ 1k(x) — k(x))|dx
fk(x)dx ’

k(x) being the model given by Equation (20), which yields
o2 = 0.31 for the given example. Note that these values are
close to the optimal values deduced from Figure 4.

In order to evaluate the covariance function k(d) we cast
N, pairs of rays (1, ;, n2.;) from P, for each value of d. For a
given d, k(d) is given by:

k(d) = E[(L(P, 1) — L)(L(P, ) — L)]
N,
1 < _ _ (25
~ — Y (L(P, ) — LYL(P, n:) — L),
Nc!;( (P, m1.i) = LY(L(P, ) — L)

where
d = arccos(ny; - M) Vi €[1, N.].

L(P, n;,;) is the radiance incoming at P from the direction
n1.; and L the mean of all L(P, n;,i). To compute k(d) asso-
ciated with the incoming radiance at point P (both showed in
Figure 5), we used a total number of 262k rays. This number
of additional rays is obviously too high if this computation
had to be performed for each new point P.
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Figure 6: Gain in quality achieved by BMC with different
values of I and &2, for the rendering of a Cornell Box view
(n = 64).

To overcome this problem, we propose to determine a
global value of / and o2 for the whole rendered image and
use these global values / and 52 in each final gathering BMC
integration. Based on Equation (25), we compute a global
covariance function k(d):

_ 1 i} _
k)~ 3 J(LP ) = DYLP ) = L),

i=1

where P; is a visible point. For each value of d, we trace
only one pair of rays (1, n2,;) from a visible point P;. After
having fit the obtained k(d) values to Equation (20), we get
I and &2. For a given view of the Cornell Box scene, we
obtain / = 0.45 and &% = 0.22. Figure 6 shows the quality
improvement (BMC RMSE over MC RMSE) obtained for
this scene with different values of [ and 5> (RMSE has been
computed with respect to a reference rendering using 16k
final gathering rays per visible point). The values obtained
with the fitting process are close to the optimal ones that we
can deduce from Figure 6, say [, = 0.5 and 6, = 0.3. While
these global values may be locally sub-optimal for a partic-
ular visible point, they prove to be quite good estimates. We
used a total of 262k rays to estimate k(d) with d € [0, /4]:
the cost of evaluating our hyperparameters is equivalent to
the cost of one additional gathering ray per visible point.

5.7.3. Making BMC rendering practical

During rendering, we want to compute the BMC estimate
given by Equation (24) for each visible point of the scene.
As shown in Section 5.7.1, evaluating E and f is straight-
forward. We still have to compute the values of z and Q.
Naively evaluating the integral for z and inverting Q for each
visible point is not practical. In Section 5 we showed that the
values of z and Q depends only on the relative position of the
sampling directions n; within a given set of directions, D.
Thus, we propose to precompute the whole vector of quadra-
ture coefficients ¢ = Q~'z for a fixed number of sets D i
then use only these sets at rendering time. Since a set of sam-
pling directions can be rotated around the normal without
changing the quadrature coefficients (cf. 5.2), we have found
that a small number N, of different sets D; is sufficient to

reduce the artefacts due to repeated sampling patterns. In ad-
dition, N, can be reduced as the number of samples 7 per set
increases.

‘We have shown in Section 5.2 that the values of f,(;) de-
pend only on 6; and /. In addition, 6; always ranges between
0 and /2, and the typical values of [ are between 0 and 1.
We chose to precompute f,(6;, [) for a set of values of §; and
[ and store it into a table. At runtime, f;(#;) is interpolated
from the closest entry values in the table. Moreover, due to
the properties of the covariance function k(x, x’), the matrix
Q is symmetric and positive-definite. We can use Cholesky
factorization to speed-up the matrix inversion process. The
resulting algorithm is given by Algorithm 1. Note that the

Algorithm 1: Final gathering algorithm using Bayesian Monte
Carlo.

/I Determination of the
hyperparameters
Compute k(d) by casting pairs of rays;
Compute [ and &2 by fitting;
// Get Ny sets of directions D; and
the associatedc;
{(D)), (cj)} = GetSets (Ny, n, I, 5);
// at rendering time, F.G. pass
foreach visible point p do
Pick a set of directions D; and associated ¢;;
Rotate D; along the normal at p by a random ¢;
Cast rays according to D; and compute Y;
Compute f and Eyc;
//BMC estimate of the irradiance
atp
Egmc = Emc +me;(Y — f);
end

function GetSets(Ny, n, [, 02)

// Precompute Ny sets Dj of n
directions 17; and their associated
quadrature coefficient ¢;

if Optimal Sampling then
Get optimal {(D;), (¢;)} from a precomputed
database of optimal sets;

else
for j =010 Ng-1do

D, = set of n random directions over the
hemisphere;
/I compute z;
foreach direction n; do
Interpolate f(n;) from the table;
end
Compute Q;;
Invert Q; using Cholesky factorization;
¢ =07""z;

end
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sets of directions D; and their associated quadrature coeffi-
cient vector ¢; can be computed on-the-fly before rendering,
or read from a scene-independent database.

5.7.4. Optimal sampling

Basically, BMC integration schemes do not rely on random
samples. In our application to final gathering, instead of gen-
erating D; using random directions, we could search for a
set of directions which minimize Equation (7) as explained
in Section 5.4. Although the optimization process is compu-
tationally expensive, the generated optimal sets D; depend
only on the values of N, [ and &2, but they do not depend
on the scene. One could precompute a scene-independent
database of optimal sets D; for some values of n, [ and 52,
storing directions and associated optimal ¢;. Then, during
the rendering process, we only have to pick some of the opti-
mal sets, trace corresponding rays and compute a dot product
between ¢; and Y.

6. Results

All results were gathered on a Intel Core Duo T2600
(2.16GHz) with 2GB RAM.

6.1. General observations

During the final gathering pass, our algorithm does not have
to draw random numbers to generate directions on the hemi-
sphere. Instead, we pick a previously computed set D; of
directions and retrieve the associated quadrature coefficient
vector ¢;. Then, the only additional computation with re-
spect to MC integration is a dot product between ¢; and Y.
During the final gathering pass, the computation time of our
algorithm is essentially the same as that of classical Monte
Carlo (the computation time is dominated by ray casting and
photon map queries). So, the overhead of our algorithm lies
in the evaluation of the hyperparameters and the computa-
tion of the sets D; together with the associated quadrature
coefficient vectors.

We found that we can get a good approximation of the
actual covariance function of the incoming radiance using
a total number of N, = 262k rays. In our test scenes, the
determination of 7 and &2 takes 1.1 s for the Cornell Box
scene, 5 s for the Sibenik Cathedral scene and 7s for the
Sponza Lucy scene.

On-the-fly generation of sets of directions and the associ-
ated quadrature coefficients depends mainly on n, the number
of rays shot from each visible point. The cost of this genera-
tion is dominated by the inversion of the n x n matrix Q. We
found that we do not need a large number N, of sets D;, to
avoid artefacts. Moreover, the larger the number of samples
n, the smaller N,. Computing all the ¢; takes 273 ms when

n =16 and Ny, = 1000, 1.16 s when n = 64 and N, = 250,
and 9.2 s when n = 256 and N; = 60.

6.2. Bayesian Monte Carlo integration using random
sampling

As Bayesian Monte Carlo does not make any assumption on
the sample directions 7;, we can make use of importance sam-
pling and/or stratified sampling to generate sample direction
sets D;. In this way, we will be able to compare BMC with
MC for the same sampling directions D; generated either
with uniform sampling or importance sampling.

Figure 7 compares the variation of RMSE with respect to a
reference rendering, as the number of samples increases. We
can see that for the exact same D;, BMC greatly reduces the
noise in the rendered image (Cornell Box, Figure 1 and 7(a)).
We can notice that BMC (with importance sampling) outper-
forms MC (with importance sampling) (Sibenik Cathedral,
Figure 7(b)). Table 1 gives some results on timing and image
quality obtained with BMC and MC from the same sets of
sample directions D;.

Figure 8 shows the rendering of a scene containing glossy
objects. Our current implementation of BMC computes fi-
nal gathering only on diffuse surfaces. The glossy reflections
were computed using Monte Carlo with importance sam-
pling. When comparing RMSE values of different methods,
we only consider the pixels computed with BMC. Figure 8(e)
and (f) show the difference images. We can see from these
difference images that the error is generally smaller with
BMC especially for bright surfaces but this is hardly visible
on the rendered picture. This is due to the fact that, thanks to
the Gaussian Process prior of BMC, a few samples are nec-
essary to evaluate the contribution of a bright surface seen
from a relatively narrow angle whereas much more samples
are necessary with importance sampling.

6.3. BMC estimator using optimal sets of directions

BMC has the advantage (over MC) of assigning small
weights to nearby samples and larger ones to relatively dis-
tant samples. As for SI-MC (Monte Carlo with stratified im-
portance sampling), nearby samples are rare, only relatively
distant samples are generated. This is why SI-BMC (BMC
with stratified importance sampling) does not perform better
than SI-MC, but provides results that are similar to those of
SI-MC in the worst case. However, with O-BMC (BMC with
optimal sample sets D;), the obtained results are better as
the method significantly reduces noise in the rendered im-
age. Note that if we want SI-MC to achieve the same RMSE
as the ones of O-BMC, more than 33% additionnal sample
rays are needed (we save 25% rays with respect to SI-MC,
Table 1).
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Figure 7: RMSE variation as a function of the number of rays. (a) Cornell Box scene. (b) and (c) Sibenik Cathedral scene.
Compared to SI-MC, SI-BMC gives similar results. However, Optimal BMC significantly improves the rendering quality.

Table 1: Quality comparison between BMC renderings and the associated MC renderings (using the exact same sets D;). Total time includes
determination of hyperparameters (few seconds, depending on the scene) and on-the-fly computation of D; and associated ¢; (9.2 sec when
n = 256). The overhead of our algorithm is negligible with respect to the time spent on ray casting. Same quality MC #rays is the number of
rays needed to compute a rendering yielding the same RMSE value as the corresponding BMC rendering.

RMSE (107%) _ _
#FG e RMSE Same quality % Rays Total time
Scene Sampling method Rays MC BMC gain MC #Rays saved (in seconds)
Cornell Box Uniform sampling 256 6.71 3.63 5.34dB 900 72% 211
Importance sampling 256 549 2.95 5.40dB 896 71%
Cathedral Uniform sampling 256 59.6 47.8 1.92 dB 402 36% 1310
Importance sampling 256 47.5 40.4 1.41dB 362 29%
Stratified + importance 256 35.9 35.5 0.1dB 266 4% 1310
Optimized sampling / 31.2 1.22.dB 342 25% 1301
Sponza Lucy Importance sampling 256 9.1 8.03 0.99 dB 445 49% 1648
Stratified 4+ importance 256 7.67 7.61 0.07 dB 271 6% 1648
Optimized sampling / 7.35 0.37 dB 332 23% 1639

In Figure 9, the image quality is the same for SI-MC
and O-BMC in some parts of the image (the global / and
&2 are far from optimal) and better for O-BMC in some
other parts (the global / and &2 are closer to optimal).
This means that finding a fast method of computing local
estimates of / and o> would further improve the performances

of O-BMC.

6.4. Discussion

The results that we have obtained are surprisingly good given
the strong smoothness assumption that we have put in the
Gaussian Process prior. First, we have used a very smooth
covariance function as explained in Section 4.2, second we
have taken a constant mean function that does not allow
to reduce radiance function discontinuities as discussed in
Section 4.3.1 and third, the model hyperparameters are se-
lected at a global level, which leads to quite long lengthscale
values, (i.e. narrow bandwidth assumption for the radiance
function). These assumptions may seem incompatible with

the sharp discontinuities met in the test scenes. However, if
we consider the results presented in Figure 3, the integral
estimate error remains below 7% with the longest length-
scale (I = 0.53). Furthermore, Figure 4 and 6 show that the
variance of BMC estimates increases slowly with / when /
is greater than the optimal value. These observations explain
why optimizing hyperparameters at the scene level leads to
rather long lengthscales since the error on the integrals es-
timates will remain low despite significant deviations from
the optimal values.

Figure 10 shows the strong smoothing effect brought by
the Bayesian prediction with the globally optimal hyperpa-
rameters, which strengthens the conclusions drawn from the
simulations of Section 5.5. Hyperparameters must be se-
lected so as to obtain the best integral estimates and not the
best data fittings. In this regard, our hyperparameters deter-
mination method leads to values that are close to optimum
as explained in Section 5.7.2 However, the simulation results
presented in Section 5.5 suggest that better estimates can be
expected if the hyperparameters could be locally adapted.
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(a) Reference (Indirect only) (b) Importance MC (¢} Importance BMC

(d) Reference (e) MC-I (difference) (f)y BMC-I (difference)

Figure 8: Rendering of Sponza Atrium scene, with a glossy Lucy. n = 256, [ = 0.42, 5% = 0.31. Glossy reflections have been
computed using importance sampling. Difference pictures have been multiplied by 10. To obtain the same quality, Monte Carlo

integration would require n = 445.

Figure 9: Optimal BMC rendering of the Sibenik Cathedral (Indirect only). n = 144, [ = 0.53, 5% = 0.29. Locally, OBMC
performance depends on how close are the global values of | and &* to the local optimal values. Note that O-BMC never
performs worse than SI-MC, hence the global quality of the rendering is improved. The overall reduction of the RMSE value is
11%. The reduction of the RMSE value for each of the detail view is respectively 8%, 22% and 16%.
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Figure 10: Bayesian prediction of incident radiance seen from a given point in the Sibenik Cathedral scene. The red dots are

the sample points.

7. Conclusion

This work clearly shows the benefits of BMC over traditional
MC methods. Similarly to deterministic quadrature methods,
BMC takes into account sample positions but remains a prob-
abilistic method in that it assumes a Gaussian prior on the
function to be integrated. Both these features contribute to
the strength of this method. In the BMC implementation de-
scribed in this paper, we have chosen to leave unchanged the
computing load of the rendering loop, i.e. estimates are com-
puted by simple weighted sums just as in standard MC. We
have shown that this method can lead to significant savings
in terms of number of rays. However, as already mentioned
earlier, this implementation does not fully exploit the advan-
tages of the BMC method. Ideally, the prior model should
be adapted to the data for each integral computation, which
is too costly with the usual likehood minimization methods.
Our future research will thus be directed toward new methods
allowing local adaptation of the hyperparameters values as
well as the mean function and the number of sample points.
The results we have obtained with this first implementation
lead us to think that there is a great margin for improvement
in this direction. We are also planning to extend our BMC
approach to the rendering of glossy surfaces. Similarly to
the diffuse reflection case, sets of sampling directions are
generated and associated weight coefficients are computed.

The difference with diffuse reflection lies in the fact that
these directions are the half-angle directions. Given a view-
ing direction and the half-angle sampling directions together
with their associated weight coefficients, we determine the
incident directions and the quadrature coefficients.
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