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Abstract—Time and streak surfaces are ideal tools to illustrate time-varying vector fields since they directly appeal to the intuition
about coherently moving particles. However, efficient generation of high-quality time and streak surfaces for complex, large and
time-varying vector field data has been elusive due to the computational effort involved. In this work, we propose a novel algorithm
for computing such surfaces. Our approach is based on a decoupling of surface advection and surface adaptation and yields im-
proved efficiency over other surface tracking methods, and allows us to leverage inherent parallelization opportunities in the surface
advection, resulting in more rapid parallel computation. Moreover, we obtain as a result of our algorithm the entire evolution of a
time or streak surface in a compact representation, allowing for interactive, high-quality rendering, visualization and exploration of the
evolving surface. Finally, we discuss a number of ways to improve surface depiction through advanced rendering and texturing, while
preserving interactivity, and provide a number of examples for real-world datasets and analyze the behavior of our algorithm on them.

Index Terms—3D vector field visualization, flow visualization, time-varying, time and streak surfaces, surface extraction

1 INTRODUCTION

Integral curves have a long standing tradition in vector field visualiza-
tion as a powerful tool for providing insight into complex vector fields.
They are built on the intuition of moving particles and the representa-
tion of their trajectories. A number of different variants exist; while
streamlines and pathlines directly depict single particle trajectories,
other curves visualize the evolution of particles that are seeded co-
herently in space (time lines) or time (streak lines). These curves have
their roots in experimental flow visualization and correspond to smoke
or dye released into a flow field. Generalizing on these concepts, inte-
gral surfaces extend the depiction by one additional dimension.

Stream and path surfaces aim to show the evolution of a line of
particles, seeded simultaneously, over its entire lifetime. These sur-
faces have been shown to provide great illustrative capabilities and
much improved visualization over simple integral curves, due to im-
proved depth perception and lighting, and increase the visual insight
into flow structures encountered during their evolution. Time surfaces
increase the dimensionality further by showing the evolution of a two-
dimensional sheet of particles. Finally, streak surfaces borrow from
both path surface and time surfaces by portraying an evolving sheet
of particles that grows during the evolution at a seeding curve as new
particles are added to the surface. They are analogous to streak lines
in that they originate from wind tunnel experiments with line-shaped
nozzles, and are therefore in a sense a very natural surface visualiza-
tion primitive for time-varying flows.

Application of integral surface visualization to large, complex and
time-varying flow is not without complication. Typical algorithms for
the approximation of stream and path surfaces make use of a form of
discretization to deduce the evolution of the surface from a finite set
of particles representing it. The required integral curve computation is
costly for large vector fields, and most algorithms make use of adap-
tive techniques to keep the number of required particles small, while
preserving the geometric quality of the resulting surface discretiza-
tion. Such methods typically require pre-computation of the integral
surface, which can then be viewed interactively as a triangle mesh. Un-
fortunately, such methods do not generalize well to time or streak sur-
faces because they cannot provide interaction with the temporal com-
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ponent of the surface evolution. For small to medium-sized rectilinear
datasets, GPU-based implementations have shown the tremendous po-
tential for insight that can be obtained from interaction with time in
time and streak surface visualization.

Here, we contribute a novel method for the computation of time and
streak surfaces that captures the temporal evolution of such surfaces
for visualization. Our algorithm is based on decoupling the adaptation
of the surface representation from the integration of particle trajecto-
ries. As a result, we obtain a set of curves that describe the trajecto-
ries of surface vertices, and an incremental description of the surface
mesh based on these particles trajectories. This allows us to faithfully
recreate a surface in a visualization stage and provide full interactive
capabilities in both space and time. Furthermore, by isolating particle
advection from surface adaptation, we are able to leverage the full par-
allelization potential inherent in the mutually independent trajectories
of individual surface particles and significantly speed up the compu-
tation in the presence of multiple CPUs or clusters. Moreover, not-
ing that for very large datasets interactive seeding of time and streak
surfaces remains elusive due to the computational overhead of their
approximation, we propose the concept of generalized streak surfaces
seeded from a moving seed curve. We show that through this, we
are able to mitigate some of the difficulties of surface seeding in large
vector fields by essentially prescribing an exploratory path for the seed
curve prior to computation.

The surfaces we obtain in complex datasets are often highly com-
plex, due to their folding and twisting nature, and warrant the use of
advanced rendering techniques to increase the visual insight resulting
from them. Here, we investigate a number of typical complications,
such as self-occlusion, and analyze possibilities on how to mitigate
them to achieve maximal visualization value from time and streak sur-
faces.

The paper is structured as follows: We start out by discussing pre-
vious work that related to the ideas presented here in Section 2. After
revisiting the basic surface concepts we make use of in Section 3, we
describe our algorithm for the computation of time and streak surfaces
in Section 4. We then proceed to describe application examples and
investigate the behavior and performance of our method in Section 7.
Following, we examine visualization aspects of time and streak sur-
faces in Section 6, before we conclude on the presented material in
Section 8 and look ahead to future work.

2 PREVIOUS WORK

Among integral surfaces, stream surfaces have been most heavily in-
vestigated in the visualization community. The first algorithm for
stream surface computation was given by Hultquist [7], who described



an advancing front paradigm that traverses the surface, integrating par-
ticle trajectories as needed and triangulating the surface on-the-fly us-
ing a greedy approach. In his algorithm, divergence and convergence
of particles in the advancing front is treated using a distance crite-
rion that inserts and removes particles from the advancing front if they
grow too far apart or too close, respectively. The resulting surfaces are
of good visual quality. Garth et al. [S] improved upon Hultquist’s work
by employing arc-length particle integration and additional curvature-
based front refinement, which results in a better surface triangulation
if the surface strongly shears, twists, or folds. They also considered vi-
sualization options such as color mapping of vector field-related vari-
ables going beyond straightforward surface rendering. Texture map-
ping on stream surfaces was first proposed by Loffelmann [10], and
several improvements were presented later [9]. A different compu-
tational strategy was employed by van Wijk [15], who reformulated
stream surfaces as isosurfaces; however, his method requires increased
computational effort to advect a boundary-defined scalar field through-
out the flow domain. Scheuermann et al. [13] presented a method for
tetrahedral meshes that solves the surface integration exactly per tetra-
hedron. More recently, Garth et al. [4] replaced the advancing front
paradigm by an incremental time line approximation scheme, allow-
ing them to keep particle integration localized in time. They applied
this algorithm to compute stream surfaces and path surfaces in large
and time-varying datasets. Using a GPU-based approach, Schathitzel
et al. [12] presented a point-based algorithm that does not compute an
explicit mesh representation but rather uses a very dense set of parti-
cles, advected at interactive speeds, in combination with point-based
rendering.

The increased complexity of time and streak surface computation
over stream and path surfaces can be traced back to two main factors:
first, many more particles are required for adequate discretization, and
second, instead of an advancing (piecewise linear) front or time line a
surface discretization has to be maintained and adapted. In the litera-
ture, the first problem is usually addressed by GPU implementations,
allowing for fast or even interactive computation of the required parti-
cles. Westermann et al. [17] approached the visualization of time sur-
faces in stationary flow using a level-set approach, where the surface
is described as the level set of a scalar field that is advected at inter-
active speeds on a GPU. This allows for interactive computation and
display, and avoids the explicit surface adaptation. A slightly different
approach was presented recently by Funck et al. [16]: they represent
time and streak surfaces using a triangle mesh which is propagated
along the trajectories of particles at the vertices of the triangulation,
integrated on the CPU. Instead of performing surface adaptation, the
mesh remains unchanged, and loss of mesh quality is compensated by
fading out triangles according to a number of quality criteria, mimick-
ing the appearance of smoke. While they achieve aesthetically pleas-
ing visualization in combination with interactive framerates and seed-
ing, the resulting surfaces are of limited use in complex flows where
the initial triangulation quickly degenerates. All methods that make
use of GPUs to compute time and streak surfaces possess the common
drawback that they are unsuitable for very-large time-varying data,
due to the limitation to regularly sampled data, the reduced amount
of memory available on GPUs, and the restriction to floating-point
precision during the integration phase. In contrast to these approaches
for time and streak surfaces, the algorithm we present here is explic-
itly aimed at a CPU-based treatment of very large, time-varying vector
fields. We maintain an explicit triangulation for the surface and adapt
it as the surface is advected through the flow. To increase compu-
tational speed, however, we separate this mesh adaptation from the
actual particle integration, allowing us to parallelize particle tracing.

The dynamic adaptation of deforming and moving triangle meshes
has a long record in the computer graphics community where it is ap-
plied among other applications to track and render fluid surfaces and
to simulate cloth and elastic objects (cf. [2] and references contained
therein). The basic objective of such surface tracking methods is to
maintain a well-conditioned triangulation in the face of strong defor-
mations of the surface, by using edge split, edge flip and edge collapse
operations to return a mesh to good form after an advection step has

been performed. While such tracking algorithms are theoretically a
good match to the adaptation of time surfaces, a straightforward appli-
cation encounters several problems that stem from the simulated and
numerical nature of the datasets under consideration such as noise and
limited accuracy of interpolation. Furthermore, these methods require
to advect the mesh by very small time steps, such that the deformation
incurred during advection is not too great; this represents a serious
performance impediment for large datasets, where the use of adaptive
numerical integration for particle advection is essential to both per-
formance and accuracy. Here, we propose a modified approach that
decouples the surface adaptation from the particle advection, thereby
avoiding the performance penalty of small adaptation time steps.

3 TIME AND STREAK SURFACES

We assume that v is a three-dimensional vector field, defined over a
domain Q C R? and a time interval [Tjyin, Tiax]. An integral curve I of
v is the solution to the ordinary differential equation
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Simply put, it is a curve that originates at the point (fy,x) and is
tangent to the vector field at every point over time. The intuitive under-
standing associated with such integral curves is that of massless par-
ticles that are advected through a domain by a vector field v. For the
category of Lipschitz-continuous vector fields existence and unique-
ness of [ is guaranteed and numerical integration methods can be used
to approximate the solution. Note that for the overwhelming majority
of application data sets, this condition holds true.

A time surface S"™° is a two-dimensional family of integral curves
that originate from a common seed surface S(u,v) C Q, or alterna-
tively, the surface formed by a dense set of particles that are located
on S at time #y and jointly traverse the flow over a time interval [fg,?].
It is mathematically described as

ST (u, v 1) i= Ly sy (1) fore >1o. ®)

Furthermore, let C(u«) be a curve, parameterized over u and con-
tained in Q. Then, a streak surface S is the union of all particles
emanating continuously from C over a time interval [t,#] and moving
with the flow from the time of their seeding #. In terms of individual
integral curves, it is described as

S tgs 1) =1y o (1) fort >t > 1. 3)

It is again a two-dimensional surface, but in contrast to time sur-
faces, the second parameter 7, refers to the seeding time. Clearly, a
streak surface consists only of the curve C at time # and “grows” over
time as more integral curves are seeded from C; the intuition behind
streak surfaces builds upon the notion of dye continuously injected
into a flow from a curve-shaped nozzle, described by C. Following
Wiebel et al. [18], we extend the above definition of streak surfaces
slightly to allow C to vary with time. The above definition is then gen-
eralized by replacing C(u) with C(u;1,), and the resulting surfaces are
called generalized streak surfaces.

Note that if the vector field is stationary, i.e. v is constant in ¢,
then the path of particle does not depend on the seeding time #y. As
a consequence, streak surfaces are identical to path surfaces (cf. [4])
in such settings. However, this does not hold for generalized streak
surfaces. Both surface types are continuous and differentiable almost
everywhere over their respecitve parameter domains. However, as is
often the case in application vector field data, if Q is finite or contains
holes, the resulting surfaces may not include points for all parameters
tuples (u,v; 1) and (u,ts; t), respectively.

We proceed to describe an algorithm to construct approximations
to both $1M€ and §58K yging a finite number of integral curves and
triangulated surface adaptation.
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(a) Edge split

(b) Edge flip

(c) Edge collapse

Fig. 1. Three types of surface mesh operations used to adapt the surface resolution during advection.

4 METHOD

In the following, we first give an overview about our algorithm in gen-
eral, before we detail integration, adaption, and surface growing.

4.1 Basic Algorithm

In general, we assume that the vector field dataset under consideration
is provided in the form of a finite number of time steps correspond-
ing to time values fy,...,?,, and that the seeding curve C or surface S
is provided in the form of either a functional description or as a dis-
crete representation as polyline or triangulated surface. From this, we
construct an initial triangulation 7' that is successively advected and
adapted. Our algorithm thereby makes use of two distinct time step-
ping approaches.

Every vertex of T corresponds to an integral curve, and we advect
vertices over an interval [¢;,... ;1] using adaptive numerical integra-
tion, obtaining a description of the integral curves over the entire in-
terval (cf. 4.2). In contrast to this dataset timestep At, we prescribe an
adaptation timestep Atgy,. Beginning at #;, the vertices of 7' are moved
in Atgp increments, and after every step, the adaptation process is car-
ried out. Should the insertion of a new vertex become necessary, the
seed point of the corresponding integral point is determined at #;, and
the curve is numerically propagated over [;,7;11]; this serves to min-
imize the error during the insertion. If the vertices arrive at #;, 1, the
process is restarted, with 7" as the new initial surface. Figure 2 pro-
vides an overview of this algorithm is pseudocode form.

We observe two basic properties of the above algorithm:

e Most integral curve computations are performed at the beginning
of a new time interval [t;,#;+1]. Hence, these mutually indepen-
dent computations are trivially parallel and can be carried out in
a distributed fashion using multiple CPUs or cluster nodes.

e The surface approximation is sequential in time, and thus succes-
sive pairs of timesteps can be treated in a streaming fashion. This
enables the treatment of very large datasets on smaller hardware,
subject only to the constraints that two timesteps fit into main
memory simultaneously.

We will first describe the numerical implementation we use to approx-
imate integral curves.

4.2 Integral Curve Computation

In large vector fields with complex structures, high-order adaptive nu-
merical integration is the key to efficient approximation of integral
curves. In our surface approximation, we make use of the DOPRIS
scheme, an adaptive Runge-Kutta scheme of fifth order [6, 11]. This
scheme was first used for visualization purposes by Stalling [14], and
its appeal for our application is founded on its ability to provide dense
output, i.e. to represent the numerically approximated particle tra-
jectory as a sequence of fourth-order polynomials that form a C1-
continuous curve. From this curve, any point in the interim evolution
of the integral curve is readily computed, and the numerical scheme
can perform its task with optimal adaptive stepsize control and is un-
constrained by a limit on the maximal distance between two consec-
utive points on the integral curve (as is the case with other adaptive
schemes).

After the integral for all vertices of 7" have been computed over
[tisti+1], T is advanced towards #;4 | using the much smaller step Afgyp.

The new vertex positions are interpolated from the piecewise polyno-
mial representations of the corresponding integral curves. We next de-
scribe the surface adaptation that is applied after every such advance-
ment.

4.3 Surface Adaptation

During the adaptation phase, the three basic operations edge split, edge
flip, and edge collapse (see Figure 1) are applied to the triangulation
T to improve the quality of the tracked surface. We next describe each
of these in more detail.

4.3.1 Edge Split

Since the approximation quality of a triangle mesh is, among other
factors, a function of the maximal edge length, we split all triangle
edges that are longer than a prescribed threshold dpmax. Here, a new
vertex is inserted at the center of the edge together with a new integral
curve seeded at the center of the edge corresponding to the beginning
of the dataset timestep, ;. The integral curve is then propagated to #; 1,
and the position of the inserted vertex determined from the integral
curve at the current adaptation time. The resulting mesh depends on
the order of splits, and we split the longest edge first to keep the mesh
well conditioned (refer also to Jiao et al. [8]). Splits of boundary edges
require no special treatment and are performed analogously to interior
edges.

Two exceptional situations can occur during a split operation. First,
the new integral curve may not reach the current adaptation time be-
cause it intersected a boundary or numerical integration failed. Sec-
ond, the modified triangulation can contain triangles with inverted nor-
mals, since an inserted vertex moved outside the area covered by the
original triangles neighboring the edge. In both cases, we insert the
vertex at the geometric midpoint of the edge at the current time, and

advance_surface( T, t_start, t_end )

{
t_stop = load_first_timestep( t_start );
t_current = t_start;

do {
integrate_curves( T, t_stop );

do {
delta_t = estimate_timestep();
t_current = min( t_current + delta_t, t_stop );
update_vertices( T, t_current );
add_streak_part ( T, t_current );

split_pass( T );
flip _pass( T );
}

while( t_current < t_stop );

collapse_pass( T );

t_stop = min( t_end,
}
while( t_stop > t_current );
}

load_next_timestep( t_current ) );

Fig. 2. Pseudocode of the surface tracking algorithm.
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Fig. 3. Degenerate cases to be avoided when flipping an edge.

seed a new integral curve from this point at the current time. If, again,
the current point is not contained within the flow domain, we consider
the insertion attempt as failed and remove the edge-adjacent triangles
from the triangulation. While we could simply keep these triangles in
place and not perform the split, we have found this to quickly produce
degenerate triangulations. Furthermore, the accuracy of the surface in
such a region is questionable, since the necessary refinement could not
take place.

To make the adaptation more robust with respect to erratic numer-
ical integration that is often encountered in simulation datasets (cf.
Section 7), we place a very small lower bound A,;, on the area of
triangles that result from the edge split and do not carry it out if this
bound is not fulfilled to prevent infinite refinement.

In addition to linear edge midpoint insertion, there are other
schemes to determine the placement of newly inserted edge midpoints,
such as the quadratic error minimizing insertion scheme [3] and the
general subdivision schemes such as Butterfly- or v/3-subdivision. We
have found however that these methods do not perform very well in our
algorithm since they tend to emphasize small scale oscillations, which
then quickly lead to large approximation errors.

4.3.2 Edge Flip

Edge flipping is commonly used in meshing algorithms such as e.g.
Delaunay triangulation. Here, it serves the purpose of improving the
local quality of the mesh by maximizing the minimum angle, increas-
ing the approximation quality of the surface triangulation and making
it geometrically more well-conditioned. An edge is considered flip-
pable if its potential length after a flip decreases by at least a fixed
ratio, which we generally chose as 0.9 to balance excessive flipping
with mesh improvement. Again, to avoid degeneracies such as very
small or inverted triangles (cf. Figure 3), we compute the triangle area
and normals of the edge-adjacent triangles, and do not proceed with
the flip operation if the normals are inverted or the resulting triangles
do not surpass the small area bound. To prevent flipping of edges that
are located on relatively sharp ridges of the surface, we compute the
volume of the tetrahedron spanned by the edge vertices and the two
opposing vertices; this models the local change of volume enclosed
by the surface incurred by flipping. If this volume exceeds a thresh-
old Vmax, the edge is considered unflippable. We have observed this
additional criterion to markedly increase the representation of ridges
where the surface folds strongly. While other criteria such as e.g. the
dihedral angle can be used to identify such creases, we prefer volume
change as a more robust criterion since it is scale-dependent and avoids
over-refinement in the presence of small-scale noise.

Applying the above criteria, we traverse all edges of the triangula-
tion (except the boundary edges) and flip any edge that is considered
flippable. As in some regions, several flip operations can be required
to achieve optimal quality, we repeat this flipping traversal a small
number of times.

4.3.3 Edge Collapse

In the case of strong convergence of integral curves, the triangulation
will come to contain very small triangles, and the number of vertices in
such regions becomes excessive. To improve the surface triangulation
and reduce the number of integral curves to be propagated in further
time steps, we perform edge collapse operations. As opposed to splits
and flips, we perform this operation only at the end of the current data
timestep f;41 such that we do not lose approximation accuracy when it
is required to perform a split and consequently insertion at ¢;.

We consider edges whose length is below a prescribed minimum
edge length d;, as eligible for collapse. For each such edge, we de-
termine the vertex to be deleted from the triangulation by determining
the volume change incurred by the removal of either vertex, and re-
moving the vertex that represents the smaller volume change. This pe-
nalizes the removal of edges that are located along ridge-like regions
of the surface and improves the approximation of strongly folding sur-
faces. If the volume change exceeds Vinax, the collapse is aborted. In
similarity to the split operation, we collapse eligible edges in order of
ascending edge length. We have again found that replacing an edge by
a new midpoint as chosen from quadratic error minimization or sub-
division does not yield good results, especially in regions where the
surface is ridge-shaped or otherwise non-smooth.

4.3.4 Parameters

The adaptation phase detailed above makes use of a variety of param-
eters that have to be carefully chosen to balance triangle mesh refine-
ment, coarsening, and approximation quality. We reduce the number
of parameters that have to be chosen by coupling them to dpyax, using
dinin = 0.1dmax, Amin = O.Idéin, and Vinax = dy;,- We have applied
this heuristic in all of our experiments and have observed the result-
ing surfaces to be of good quality, as demonstrated in Figure 4 and
Section 7. Hence, the remaining parameter dmax takes the form of a
scaling parameter that must be chosen to roughly reflect the scale of
the smallest structures that the surface must resolve correctly.

4.3.5 Step Size Estimation

In order to guarantee that the surface can be adapted correctly, the
adaptation timestep Aty must be chosen such that the triangulation
does not undergo irreparable changes in between adaptations. Typi-
cally, such a timestep is chosen much smaller than the dataset timestep
At. To avoid burdening the user with the choice of this timestep, we
select it automatically by requiring that no vertex of the triangulation
moves further than dyax from its current position. As a consequence,
no edge can grow to more than twice dmax in length, and has to be split
no more than once per adaptation step.

Using the piecewise polynomial integral curve representation de-
scribed above, this criterion is easily approximated by evaluating the
current speed of any vertex in the triangulation by evaluating the
derivative magnitude of the integral curves through interpolation. This
avoids the overhead of additional costly vector field evaluations at ev-
ery vertex position. Then, if the maximal determined vertex velocity
is denoted by vax, We select the next adaptation time step as

Atgyp := dmax /Vmax .

Fig. 4. Time surface mesh in the Ellipsoid dataset. Although the surface
has undergone strong deformation, the mesh remains in good condition.



4.4 Streak Surface Growing

So far, we have discussed an algorithm that is able to propagate and
adapt a time surface as it is advected by a given vector field. To ap-
ply the same algorithm to streak surfaces and generalized streak sur-
faces, the surface must be extended to reflect the new particles seeded
continuously at the (moving) seeding curve. To guarantee adequate
discretization of this small part of the surface, we apply the following
scheme.

At the initial time, a number of vertices and edges connecting them
into a polyline are placed on the seeding curve C such that they fulfill
the maximum edge length criterion. Then, the vertex positions and the
seeding curve C are advanced in time, and the resolution is maintained
using edge splitting. If any surface vertex moves more than dpyax away
from the seeding curve, two triangles connecting the surface edge to
the seeding curve are generated by placing two new vertices on the
seeding curve C. This straightforward scheme works well even in the
presence of a rapidly moving seeding curve.

4.5 Output

After a time or streak surface has been approximated, the evolution of
the surface can be completely recreated from the initial mesh using the
following observations:

e The position of any vertex with respect to time can be interpo-
lated from the piecewise representation of its corresponding in-
tegral curve.

e The evolution of the topology of the triangle mesh describing the
surface can be recreated at any given point in time by sequen-
tially applying all edge operations (splits, flips, and collapses)
that were applied during surface adaptation up to the desired
time.

Consequently, we record the topological changes to the mesh together
with the time at which they were performed in a list. Both the list and
all integral curve representations are saved during and after the surface
computation. With this representation, we do not require to store a
triangle mesh for every step at which the surface changes; this would
be prohibitively expensive as the number of changes to the mesh can
be very large for complex surfaces. Hence we obtain a very compact
representation of the full surface evolution which serves as input to our
surface visualization, as described in the Section 6.

5 PRACTICAL CONSIDERATIONS

We now detail some aspects of the behavior of our algorithm when
applied to extract integral surfaces from large, complex simulation
datasets.

5.1 Numerical Aspects

In general, there are two sources of error in the surface approxima-
tion: first, approximation error is incurred by the discrete nature of the
surface. Here, the approximation accuracy crucially depends on the
maximal length of the surface mesh edges, as well as on the shape of
the triangles, where skinny triangles must be avoided to achieve good
approximation. A secondary source of error is the insertion of new
vertices into the surface triangulation. Since edge midpoints do not
exactly represent the curvature of the surface, the inserted vertex is not
exactly located on the surface, and in a worst case scenario, small er-
rors introduced by this may be exponentially magnified by the integral
nature of the surface. However, both errors tend to zero as the max-
imum edge length is decreased. This fact is leveraged by the longest
edge bisection criterion, as is customary in surface refinement. To in-
vestigate the correctness and accuracy of our adaptive algorithm, we
have compared select surfaces against non-adaptive, high-resolution
surfaces propagated from the same seed surface or curve and verified
that the error is reduced with decreasing maximum edge length.

A different source of errors stems from the use of numerical inte-
gration. In significantly complex simulation data, such interpolation
can be unreliable; this problem is encountered especially in the close

vicinity of domain boundaries. As described above, we have added a
number of criteria to our algorithm to make it more robust in the face
of such difficulties. In the worst cases, instead of continuing with a
possibly incorrect surface, we opt to rather remove the corresponding
vertices or edges from the triangulation. Fortunately, such missing tri-
angles are relatively rare and do not have a significant impact on the
resulting surface visualizations.

5.2 Performance

The performance of our algorithm depends strongly on the number
of vertices in the surface triangulation and, correspondingly, on the
number of integral curves that must be computed for any given sur-
face. Performing such computations in highly resolved complex data
is an expensive task. Especially the unstructured datasets consisting of
mixed element types that we have used to evaluate our method (Sec-
tion 7) requires careful cell location and interpolation. This is reflected
in substantial running times of our algorithm. While significantly bet-
ter performance could be easily achieved for rectilinear datasets, such
as those produced by DNS simulations, our goal is to document the
performance of our algorithm on the finite-element meshes that are
ubiquitous in CFD practice.

Table 1 provides the performance figures corresponding to the sur-
faces shown in Figures 4-9. We observe that in all cases, more than
90% of computation time is spent in integration. However, this com-
putational effort is rewarded with a surface that accurately reflects the
vector field under consideration. Furthermore, we maximize the vi-
sualization result by not only providing a final surface, but also mak-
ing accessible to visualization the entire surface evolution in compact
form. Finally, the ability of our algorithm to compute generalized
streak surfaces alleviates the problem of iterative seeding refinement.
By letting a streak surface seed curve traverse a region of interest, an
entire volume of flow can be investigated in one computational pass.
Furthermore, the observed scaling factors on an 8-way SMP system in-
dicates that we have managed to leverage the inherently parallel nature
of massive integral curve computation in the parallel implementation
of our algorithm.

6 VISUALIZATION

The computation times incurred by our algorithm are significant if
complex surfaces are to be accurately approximated. Presenting the
user with a final mesh is unsuitable, since the ability to depict the evo-
lution of the surface is crucial to comprehend the behavior of the flow
it depicts. Providing the ability to navigate freely in time when visu-
alizing the surface is helpful in understanding how certain parts of a
surface evolve. Our approximation algorithm is ideally suited to this
purpose since we can trivially and efficiently recreate the surface at
any given point during its advection.

High-quality rendering is a crucial aspect of graphically depicting
highly complex time and streak surfaces. This has recently been doc-
umented independently by Garth et al. [4] and von Funck et al. [16].
Correct surface lighting and shading provide important depth cues to
the viewer, and we have found that multiple light sources can further
enhance the spatial perception of the surfaces we visualize. Since the
surfaces we compute and visualize are often self-occluding, correct

Problem Data 1CPU  8CPUs Scaling Int
Ellipsoid SS 25GB 131 min. 19 min. x6.9 0.93
Ellipsoid TS 18 GB 154 min. 23 min. x6.7 0.91
BMW TS 1GB 329 min. 45 min. x7.3 0.96
BMW GSS 1GB 252 min. 36 min. x7.0 0.94
DeltawingTS | 7GB 517 min. 75 min. x6.9 0.94
Table 1. Performance measurements for the five test problems de-

scribed in Section 7 (TS = time surface, (G)SS = (generalized) streak
surface). All measurements were performed on a quad-core AMD
Opteron 2.4GHz with 8GB RAM. “Data” refers to the amout of data
streamed during the computation. “Int” denotes the fraction of com-
putation time spent on integral curve computation.



Fig. 5. Three frames from an animation showing the evolution of a time surface in the BMW dataset. The surfaces is seeded on a square at the
rear end of the car and illustrates the recirculation of air in this region of the flow. A streak ribbon texture provides additional depth cues.

handling of transparency is important. Furthermore, texturing of the
surface can further help to orient a viewer looking at such a surface. As
is apparent from Equations 2 and 3 above, both types of surfaces offer
natural texture coordinates from their two-dimensional parameteriza-
tion. While for time surfaces the parameters do not possess special
meaning, streak surfaces allow texture mapping to depict both time
lines (lines of constant #y) and streak ribbons (lines of constant u), as
depicted in Figure 7. We make use of these mappings to depict the
surfaces using stripes of relatively high opacity interleaved by areas of
low opacity that provide surface context. In cases where the stripes
do not work well, such as when many surface layers are nested very
closely, we still apply a simple two-dimensional color map to the sur-
face; this helps in distinguishing different surface parts visually (see
e.g. Figure 8).

To allow for interactive visualization under these constraints, we
have implemented a visualization tool that incorporates all the dis-
cussed options. Good performance in the presence of transparency
and high depth complexity is achieved by using the dual depth peeling
technique described by Bavoli and Myers [1], and high-quality light-
ing and texture mapping is achieved through the use of pixel shaders.
Reconstructing the surface at a given point in time is performed on the
CPU; our implementation is fast enough to handle quick and interac-
tive temporal navigation even for large surfaces. The surfaces shown
in Figures 4-9 are rendered and animated at interactive speeds of 20—
60 fps on commodity hardware.

7 EXAMPLES

To demonstrate our method, we have applied it to compute various
surfaces in three different application datasets. Here we show the re-
sulting surfaces as rendered by our visualization tool.

Ellipsoid The Ellipsoid dataset results from an unsteady simula-
tion of the flow around an ellipsoid, where the angle of the surrounding
flow changes over time. Vortex formation near the downstream bound-
ary of the embedded ellipsoid can be observed. The data consists of
am unstructured mesh of 2.6 million hexahedral cells, over which the
flow field is given in 600 time steps. This dataset is very well resolved
and represents a relatively well behaved and smooth case with very
good temporal resolution.

Figure 7 depicts a single streak surface seeded and computed over
ca. 70% of the temporal extent of the dataset. Seeding was initialized
at the initial timestep on the upstream side of the ellipsoid, and the
streak surface nicely captures the transitionary stage during the vortex
formation that forms a bubble shaped structure. In the upper image
of Figure 7, time line texturing has been applied, and it is straightfor-
ward to distinguish parts of the surface that were seeded later (greener
stripes) from those that were seeded earlier (redder stripes), allowing
good temporal orientation. In the lower left image, streak line textur-
ing has been applied to illustrate the paths of different streaks. Again,
a variation in the color of the stripes provides both spatial and tempo-
ral context. For comparison, the lower right image does not make use
of texturing; there, no correlation between surface points and seeding
time or origin can be made. To integrate the surface, 30,028 integral

curves were traced and 268,171 mesh adaptation operations were per-
formed.

A time surface in the same dataset seeded on a rectangle just down-
stream of the ellipsoid in the initial timestep and traced over ca. 50%
of the dataset extent in time is shown in Figure 8. The surface con-
sists of 102,764 pathlines and required 691,916 adaptation operations.
In this figure, we have opted for a simple two-dimensional color map
since there is no natural texturing for time surfaces. During the evolu-
tion of the surface, it wraps around the nascent, forming vortex system,
and encounters strong deformation when it is laterally drawn into the
forming vortices. The resulting final surface mesh is illustrated in Fig-
ure 4. Both surfaces demonstrate the ability of our algorithm to deal
with data set sizes strongly exceeding available main memory.

Car This steady simulation models the flow of air around a car.
Vortex shedding can be observed on various parts of the car. The flow
vector field is represented on an unstructured mesh with 15 million
elements of mixed type. Since the flow is assumed symmetric with re-
spect to the symmetry axis of the car, the computational domain con-
tains only the right side of the car. Figure 5 illustrates a time surface
seeded just downstream of the rear end. The upper part of the surface
moves away from the car quickly, but the lower part is drawn into a
large vortex emanating from the edge of the rear bumper. A striped
texture has been applied to the surface to provide better spatial orien-
tation.

Since this dataset is stationary, streak surfaces with a fixed (constant
in time) seeding curve are identical to stream surfaces, and thus our
method is computationally more exhaustive than a dedicated stream
surface algorithm (e.g. [5]). However, we demonstrate a general-
ized streak surface in Figure 6, where the seeding curve is moving
downwards parallel to the rear window. Since the complexity of this
dataset requires long computation times, such a moving seeding curve
possesses exploratory character without involving interactive seeding;
here, the region behind the rear window is explored. The surface is
textured with a streak stripe pattern. Again, as the streak reaches the
lower part of the window, the surface is drawn into the vortex behind
the car. While seeding is terminated as the seed curve reaches the
lower end of the window, the surface advection is continued, and this
illustrates an interesting velocity profile just above the surface of the
trunk, and a zone near the window center where the flow moves much
slower than further out.

Delta Wing In order to study the effects of vortex breakdown in
aviation, an unsteady simulation of a delta wing configuration exhibit-
ing vortex breakdown was performed. We have selected this dataset
since it has proven difficult from a numerical perspective in previous
work. It represents an ideal numerical test case for the robustness of
our method. The dataset consists of several hundred time steps over a
grid with 19 million tetrahedral elements. A time surface was seeded
above the wing, and parallel to it, near the wing tip. The flow is violent
in this area as surrounding air is forced around the wing and twisted
into several vortices above the wing. This region of the dataset is very
highly resolved; to obtain an accurate surface, 187,645 integral curves
had to be traced. Here, the integration time is rather short, but the nu-
merical integration scheme has to take very small steps to compute the



Fig. 6. Three frames from an animation showing the evolution of a generalized streak surface in the Car dataset. The surfaces is seeded on a
curve moving parallel to the rear window. After seeding is terminated, some parts of the surface remain attached to the rear window. The surface

is depicted using a streak ribbon texture.

integral curves. Figure 9 shows the evolution of the surface at early
and late stages of evolution. The surface is well resolved, and the right
image illustrates the mesh obtained from our algorithm. To provide
spatial context, we have applied a striped texture to this time surface,
where the stripes indicate radial distance on the seed surface to the
wing tip. The surface demonstrates how several vortices are formed
and interact near the wing’s leading edge.

8 CONCLUSION
In this work, we have made the following contributions:

e We have presented a novel approach for the computation of time
and streak surfaces in large and time-varying datasets. Our ap-
proach decouples mesh advection and adaptation from integral
curve computation, allowing to achieve optimal precision and
performance in the computation of the latter and exploit inherent
parallelism.

e To maximize the visualization gain from time and streak surface
computation, we make use of a compact representation of the
surface evolution that allows full real-time interaction with the
temporal component of the surface for visualization.

e We have described several aspects of graphical representation
such as transparency and texturing of time and streak surfaces
that benefit their visualization, and the visualization of flows us-
ing them.

o Furthermore, we have demonstrated and discussed the behavior
of our algorithms with respect to robustness, accuracy, and per-
formance, and shown it able to approximate very complex sur-
faces in large time-varying vector fields.

For future research, we plan to address a number of limitations of our
method. In order to enable more interactive seeding, we envision com-
puting time and streak surface in an incremental, progressive manner,
that quickly generates low quality results from downsampled vector
field data; once an interesting surface is found, it may then be com-
puted in high quality. To further reduce computation times and gain
the ability to treat largest-scale datasets, we plan on exploiting addi-
tional parallelization options. Concerning visualization, further ren-
dering and texturing options should be explored to give the surfaces
even more of an illustrative character.
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Fig. 7. A streak surface in the Ellipsoid dataset as depicted in our interactive visualization tool. The surfaces is seeded upstream of the ellipsoid
in the initial timestep and shows a prominent bubble that precedes the vortex formation. Top: Overview; a time line texture provides temporal
orientation. Bottom left: Surface textured with streak ribbons. Bottom right: Without texturing, spatial and temporal orientation on the surface is

[T

Fig. 8. Evolution of a time surface in the Ellipsoid dataset. The surface is seeded on rectangle located immediately downstream from the ellipsoid
near the temporal beginning of the dataset and illustrates parts of the flow that remain close to the ellipsoid and twist to envelop the nascent vortex
system as it forms. A two-dimensional color map helps identify distinct parts of the surface despite heavy overlap.

Fig. 9. Left images: Evolution of a time surface in the delta wing dataset, seeded parallel to the wing tip. The texture provides radial distance stripes
to the wing tip for spatial orientation. Right image: Despite numerical difficulties, the surface mesh remains well-conditioned.



