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We develop tools for efficient and reliable 
data exploration and understanding.

Real functions are ubiquitous 

in the representation of 

scientific information.
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We aim at a robust framework for data 
visualization, analysis and illustration.

Generic visualization tools
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We aim at a robust framework for data 
visualization, analysis and illustration.
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We aim at a robust framework for data 
visualization, analysis and illustration.

Data Analysis

Bubbles and spikes in turbulent mixing 
of Rayleigh-Taylor instability.

Multi-scale time tracking 
of combustion particles.

Topological analysis of the channel 
structures in porous media.

Data analysis and visualization by Peer-Timo Bremer

Data analysis and visualization by Ajith Mascarenhas

Data analysis and visualization by Mark Duchaineau
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We develop a theory for a framework of 
“practically good” topological algorithms.

• Use fundamental 
characterizations of the 
representation model:

e.g. characterize the behavior of real 

functions using Morse Theory.

• Intrinsically robust computations:
theory developed on computer 
based representations.

• Comprehensive analysis:
guaranteed extraction of all the 
features present in the data

• Multi-scale representation model:
flexible and scalable data 
analysis and exploration
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We take a formal approach to the analysis 
of real functions based on Morse theory.

• In 1D this is the simple and natural approach for 
studying the trends in a real function.
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We take a formal approach to the analysis 
of real functions based on Morse theory.
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• Identify critical points (zero derivative).
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We take a formal approach to the analysis 
of real functions based on Morse theory.

• Partition the domain into monotonic regions.
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We take a formal approach to the analysis 
of real functions based on Morse theory.

• Partition the domain into monotonic regions.
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• Remove small features that are irrelevant (noise).
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We take a formal approach to the analysis 
of real functions based on Morse theory.

• Remove small features that are irrelevant (noise).
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• Simplify features that are below the “scale” of interest.
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Simple and isolated critical points are 
classified with the Morse lemma.
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Simple and isolated critical points can be 
simplified based on the index lemma.

Index Lemma
Critical points can be 

created or destroyed in pairs 
with index that differs by one.

Minimum Maximum1-saddle 2-saddle

persistence
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It is easy to attain isolated critical points 
but hard to keep them non-degenerated.
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Computationally the approach cannot be 
extend to dimension higher than four.

Insolubility of the Problem of Homeomorphism.
A. A. Markov. 1958 

(translation by Afra Zomorodian).

For every natural number n > 3, 
one can create an n-manifold Mn, 

such that the problem of homeomorphism 
of manifolds to Mn is undecidable.
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We use ascending/descending manifolds 
to characterize the cells of the complex .



VP 18CASC

minimum
maximum
minimum
maximum
minimum
maximum

We use ascending/descending manifolds 
to characterize the cells of the complex .
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Cell of the Morse-Smale complex

We use ascending/descending manifolds 
to characterize the cells of the complex .
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Consider a simple 2D function.
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We use ascending/descending manifolds 
to characterize the cells of the complex.



VP 22CASC

Ascending 

Manifold

We use ascending/descending manifolds 
to characterize the cells of the complex.
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Descending 

Manifold

We use ascending/descending manifolds 
to characterize the cells of the complex.
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Cell of the Morse-Smale 

complex

We use ascending/descending manifolds 
to characterize the cells of the complex.
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The Morse-Smale complex decomposes 
2-manifolds of any genus into quads.

A d-cell contains gradient lines 

connecting critical points that 

differ in index by d.
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Morse-theoretical approaches have a 
natural multi-scale structure.

1D

2D
time

3D



VP 27CASC

We are developing new algorithms for 
robust tracking of topological features.

• Reeb-graphs help us 
understand scalar 
fields
at moments in time

• Time-varying data 
results in complex 
changes in Reeb graph 
structure as the level 

sets evolve

(1) (2) (3) (4)
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We use Jacobi sets to develop new 
comparison metrics for scalar fields.

The Jacobi set contains the 
points where the gradients of 
two fields are parallel.

Jacobi set of density and 
pressure gradients highlights 
regions of vorticity generation.
The critical points lie on the 
Jacobi set, relating the Morse 
complex to the Jacobi set.

We have developed new metrics for scalar field comparison [6]

time

correlation

t1

t2

t3

t1 t2 t3
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We are developing topology based shape 
characterization for V&V applications.

turbulent viscosity coefficient 
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Rayleigh-Taylor instability occurs in super-

novae, fusion, and other phenomena

Mixed region is 
shown at initial time

Heavy fluid is above 

mid-plane, light fluid 

is below

The mixing region 

lies between the 
upper envelope 

surface (red) and 
the lower envelope 

surface (blue)
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We analyze Rayleigh-Taylor instability 

simulation data at high resolution

• ALC run:  1152 x 1152 x 1152
— ~ 40 G / dump

— 759 dumps, about 25 TB

• BlueGene/L run:  3072 x 3072 x Z
— Z depends on width of mixing layer

— Over 40 TB

• Bubble-like structures are observed in laboratory 
and simulations: 

— no prevalent formal definition of bubbles

• Bubble dynamics are thought to be one way to 
characterize the mixing process

• Previous bubble models
— Kartoon et. al., single resolution model for early time

— Bubbles are multi-scale structures
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We propose Morse analysis of the upper 

envelope and interactive visualization

• The envelope surfaces are already utilized in the CFD 
community for analysis 

• The structures in the surface provide a bound on the 
activity of bubbles in the flow
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We compute the Morse-Smale complex of the 

envelope surface

F(x) on the surface is 
aligned against the 
direction of gravity 
which drives the flow.

Morse complex 
cells drawn in 
distinct colors.

In each Morse 
complex cell all 
steepest ascending 
lines converge to 
one maximum.

F(x) = z
Maximum
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Hierarchies are generated by simplifying 

topology

• For example, the “persistence” may be varied, annihilating pairs of critical points and 
producing a smoothed surface

p1
p2

SaddleSaddle
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Our workflow utilizes streaming data 

management and analysis tools

RAW

DATA

isosurface

extraction

multi scale

Morse analysis

geometric tracking

quantitative analysis

4.5TB

feedback for adjustment and revaluation
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We segment the envelope surface according to 

�the Morse-Smale complex

T=100

T=353

T=700
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00.93%

02.39%

04.84%

Persistence

Threshold

53.0 353 503 700400

slope -0.65

slope -1.72

slope -0.75

Number of

bubbles

Timestep

We are using Morse theory for quantitative 
analysis of Rayleigh-Taylor turbulence.

Under-segmented

Over-segmented
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death

merge

split

birth
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Adapting persistence produces quantitatively 

accurate bubble counts over time
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Linear growth
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Weak turbulence

M
o

d
e-

N
o

rm
al

iz
ed

 B
u

b
b

le
 

C
o

u
n

t

(l
o

g
 s

ca
le

) 

Derivative

Bubble Count

-3

-2.5

-2

-1.5

-1

-0.5

0

1.0 

(9524 bubbles)

0.01

0.1

0.5

1 10 20 303 4 52 6 7 8 9 40

sl
op
e 
1.
53
6

sl
op
e 
2.
57
5

sl
op
e 
1.
94
9

t/τ (log scale)

D
er

iv
at

iv
e 

o
f 

B
u

b
b

le
 C

o
u

n
t



VP 43CASC

Mixing transition
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Strong turbulence
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Analysis and comparison of turbulent 
mixing simulations of different type. 

Large Eddy Simulation Direct Numerical Simulation
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Feature based comparison and 
validation of a DNS with a LES.
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Conclusions

• Development of robust and reliable algorithms based 
on sound theory of model that can be represent on a 
computer.

• Design of proper Morse functions for application 
specific segmentation.

• Extension to general vector and tensor fields.

• Extension to discrete data (e.g. ontology graphs).
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Lawrence Livermore National Laboratory under contract 
No. W-7405-Eng-48.


