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ABSTRACT

We present a set of building blocks that provide scalable data
movement capability to computational scientists and visualiza-
tion researchers for writing their own parallel analysis. The set
includes scalable tools for domain decomposition, process as-
signment, parallel I/O, global reduction, and local neighborhood
communication–tasks that are common across many analysis appli-
cations. The global reduction is performed with a new algorithm,
described in this paper, that efficiently merges blocks of analysis
results into a smaller number of larger blocks. The merging is con-
figurable in the number of blocks that are reduced in each round,
the number of rounds, and the total number of resulting blocks. We
highlight the use of our library in two analysis applications: parallel
streamline generation and parallel Morse-Smale topological analy-
sis. The first case uses an existing local neighborhood communica-
tion algorithm, whereas the latter uses the new merge algorithm.

Index Terms: D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel Programming; H.3.4 [Information Storage
and Retrieval]: Systems and Software—Distributed Systems;

1 INTRODUCTION

This paper introduces a library to assist in the development of par-
allel algorithms for the analysis of very large data. Computational
science today requires some form of parallel analysis and visualiza-
tion (henceforth simply called analysis) in order to extract meaning
from these data, and in the extreme case, such analysis needs to
be carried out at the same scale as the original simulation. Even in
postprocessing, parallel analysis algorithms need to scale efficiently
to clusters with thousands of cores, since the core count in clusters
is rapidly growing alongside that in supercomputers.

Scalable, parallel analysis of data-intensive computational sci-
ence relies on the decomposition of the analysis problem among a
large number of distributed-memory compute nodes, the efficient
data exchange among them, and data transport between compute
nodes and a parallel storage system. The emphasis on data move-
ment is the key point. As we will see, many analysis tasks rely on
some form of global information, which in a distributed-memory
setting must be communicated among nodes. Most, if not all, read
and write to storage as well. These building blocks: configurable
data partitioning, scalable data exchange, and efficient parallel I/O,
are the main components of our library.

Designing and implementing scalable, parallel analysis algo-
rithms from scratch, however, can be daunting. Parallel program-
ming models have steep learning curves. In today’s supercomputing
environment, MPI [12] is the prevalent model for distributed paral-
lel programming and scales to the largest machines in the world,
but it is a low-level interface that does not attempt to shield parallel
constructs from developers. Even with a mastery of parallel pro-
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graming, finding solutions that balance load, minimize data move-
ment, and hide latency requires considerable effort.

Our work is guided by the observation that a core set of scalable
data decomposition and data movement utilities is fundamental to
most parallel analysis applications. These utilities are written by us-
ing MPI and provide complex operations that are difficult to scale.
We do not provide the serial analysis per se; rather, we assume that
the developer knows how to perform the sequential analysis task
or that serial tools exist for this. What we provide is a library that
assists developers in parallelizing such operations.

DIY (”Do-It-Yourself” Parallel Analysis) is a prototype library
of scalable core components for the decomposition and movement
of data, targeted for analysis workloads that are data-intensive and
bound by I/O and communication. DIY includes

• Efficient I/O to and from parallel storage systems,
• Parallel sorting,
• Domain decomposition and assignment to MPI processes, and
• Local and global communication.

Our target audience consists of computational scientists perform-
ing their own analysis, visualization researchers building new par-
allel analysis algorithms or parallelizing existing ones, and produc-
tion tool builders and maintainers working on improving the scal-
ability of their tools. Our target execution modes are in a running
simulation (in situ), alongside one (coprocessing), and in postpro-
cessing after a simulation has completed. Our prototype is a library
written in C++ that makes heavy use of the Standard Template Li-
brary. This enables the code to remain relatively small and main-
tainable, while wrappers hide high-level code constructs from lan-
guages that do not support them and allow DIY to be called from C
and Fortran programs.

2 BACKGROUND

Our development of scalable data-related components is influenced
by three related areas of research. We draw from our own and oth-
ers’ earlier work in parallel analysis algorithms in order to identify
common data needs. We discuss the lower-level libraries on which
DIY relies. We also compare DIY with other toolkits and parallel
analysis approaches and explain how our solution differs from these
and fills a set of needs not addressed elsewhere.

2.1 Survey of Analysis Algorithms
We examined the data movement requirements of a number of anal-
ysis problems. In all of these applications, data are distributed
among MPI processes (we will use the term process for an MPI pro-
cess from now on) such that each process contains a subset of the
original problem. The purpose of this overview is to confirm that
DIY’s features cover the needs of numerous analysis algorithms,
while Section 4 will spotlight two of these applications in greater
detail.

In the following examples, we concentrate primarily on the com-
munication strategy. Communication can take two forms in analysis
algorithms: global reduction and local neighborhood communica-
tion. When the underlying operation is associative, global reduc-
tion is the best choice, because communication can be reordered
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for greater efficiency. The alternative is some number of iterative
neighborhood communications that relay information among pro-
cesses. DIY allows arbitrary combinations of these communication
steps, because analysis algorithms can exhibit a variety of commu-
nication patterns, as the following examples show.

In sort-last parallel volume rendering [5,27], each process locally
renders an image of its data subdomain, and the resulting images are
depth-blended together into one final image. While depth-blending
is not commutative, it is associative; hence, the image composition
stage is a global reduction, which can be performed efficiently with
a configurable algorithm [17, 25].

Parallel particle tracing [26, 28] in flow field visualization and
other applications imposes an ordering on operations that is not as-
sociative. Because a particle cannot be sent to a destination pro-
cess until it has arrived at the source process, processes cannot be
grouped arbitrarily. The communication pattern in particle tracing
requires forming local neighborhoods and iterating over some num-
ber of rounds or until the algorithm converges.

Computing the Morse-Smale complex [14] in parallel can in-
volve none, one, or both communication strategies. Local Morse-
Smale computation introduces critical points at subdomain bound-
aries, which, if desired, can be removed through a global reduc-
tion. Additionally, further simplification can remove low persis-
tence nodes by tracing arcs across block boundaries with local
neighborhood communication.

Parallel feature identification can be performed with a watershed
algorithm that combines connected component labeling with region
growing. The region growing phase in [24] is performed with a
global reduction followed by a local neighborhood exchange that
iterates until it converges. An alternative approach is to perform
the global reduction with a single destination process, called the
visualization-accumulator in [3], thereby eliminating the need for a
subsequent local neighborhood communication.

Parallel computation of the information content of a dataset can
be accomplished using information-theoretic techniques [36] at the
granularity of an individual vertex, a block, or the entire data do-
main. Global reduction is needed to compute a single entropy value
for the domain, while local neighborhood communication is used to
exchange ghost layers between blocks for entropy field calculations
at each vertex.

As an example of iterative reduction, Parallel k-means cluster-
ing [19] requires several global reductions, one per clustering step
until the algorithm converges. For every clustering step, each pro-
cess computes a local k-means clustering followed by a reduction
among all processes to merge local clusters into global ones.

Voronoi tessellations have been shown to be useful for identi-
fying voids in cosmological simulations [7]. When computed in
parallel, resolving the tessellation across block boundaries requires
iterative local neighborhood communication until all artifacts in the
tessellation have been resolved.

2.2 Underlying Libraries
DIY depends on several lower-level tools in order to perform its
work. At the same time, we do not attempt to entirely hide lower-
level functions from applications; they are still free to call these
tools directly. Our goal is adding useful functionality rather than
encapsulating entire libraries.

MPI is mandatory. Distributed-memory message passing is a
mainstream cluster and HPC parallel programming model in use
today. Each processing element has a separate address space and
explicitly passes messages when communicating data among ad-
dress spaces. The de facto standard and implementation of this
programming model is MPI, and we expect that it will remain so
for the foreseeable future [1]. We recommend installing the cur-
rent version of MPICH21, although most implementations of the

1http://www.mcs.anl.gov/research/projects/mpich2/

MPI-2 standard will work. MPI can also be combined with finer-
grained threading models in an address space [15], such as GPU
or CPU threads. Currently, DIY assists in the high-level, internode
MPI parallelism and leaves the finer-grained thread parallelism to
the local computation.

We make optional use of the Zoltan parallel services library [9]
in order to perform dynamic load balancing. It provides recursive
bisection, graph, and hypergraph partitioning and allows us to use
various combinations of weighting criteria in assigning blocks to
processes. Zoltan reports how the new processor assignment dif-
fers from the existing one but leaves DIY to actually perform the
required data movement efficiently.

Efficient, parallel I/O is often a bottleneck in analysis applica-
tions, especially those that read and write large amounts of data
from and to parallel storage systems. MPI-IO [32] (part of MPI-
2) serves as the foundation upon which higher-level parallel I/O
libraries such as parallel netCDF [20] and parallel HDF5 [10] are
built. We support reading raw binary data by using MPI-IO as well
as netCDF and HDF5 formats with an efficient block-structured,
two-phase I/O mechanism described in [16].

2.3 Other Approaches to Parallel Analysis

VTK originated in 1993 and remains a popular platform for build-
ing visualization applications and tools [30]. Its strengths are porta-
bility and an object-oriented design for constructing and execut-
ing networks of execution pipelines. VTK also supports paral-
lel dataflows using streaming and shared memory as described in
[34]. Full-featured tools have been built using VTK, notably Par-
aView [35] and VisIt [6]. Both provide a variety of data models,
utilities, and an extensible environment for adding new algorithms.

A different approach is taken by parallel analysis languages such
as Parallel R [29] and Scout [22]. We decided that implementing
DIY as a library built on a familiar Fortran/C/C++/MPI platform
would enable us to reach more computational scientists, since that
is the API that they most often use.

Other frameworks such as ADIOS [21] offer asynchronous
“hands-off” data characterization in the background of writing out
data by a simulation, without changing or rebuilding the simulation.
This is in contrast to our “hands-on” philosophy of computational
scientists taking direct control over analysis by embedding it di-
rectly into a simulation.

Google’s MapReduce [8] model has been applied to scientific
data analysis recently [31]. It features a simplified programming
interface and a fixed-function analysis pipeline consisting of a local
computation (map) followed by a global reduction (reduce). The
DStep [18] model expands on MapReduce by adding a domain
traversal stage prior to reduction. In contrast to fixed pipelines
such as MapReduce and DStep, our approach requires more pro-
gramming effort but allows arbitrary combinations of computation,
global reduction, and local neighborhood communication.

GLEAN [33] is a framework for executing analysis in a variety
of locations within a large-scale HPC ecosystem composed of com-
pute, analysis, and I/O resources. It stages and moves data between
these resources as needed. Our goal is to complement solutions
such as VTK and GLEAN with DIY, rather than duplicating their
capabilities. The integrated use of these tools is one of our active
areas of research.

3 METHOD

We discuss the data structures for managing blocks and their neigh-
bors and the mechanism for passing the application data structures
to DIY. The components of the library organization are explained–
I/O, block management, and communication.
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Figure 1: Data structure for one process is a list of local blocks. Each
block contains bounds information and a list of neighboring blocks.
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Figure 2: The library is organized into three main modules for per-
forming parallel I/O, block management (domain decomposition), and
communication. Examples in C++ and wrappers for C and Fortran
applications to call these modules are also included.

3.1 Data Structures

Today’s petascale architectures limit memory at a few gigabytes per
node, and all indications for exascale machines are that there will be
even greater pressure to limit the memory size of a node. Therefore,
not only must the performance of analysis algorithms scale with
number of processors, so too must the memory footprint. The way
to achieve memory scalability is avoiding global data structures that
are O(total number of processes) and O(total amount of data).

DIY’s data structures were designed with memory scalability in
mind. Each process stores the data structure shown in Figure 1.
There is one row for each local block that the process owns: it
contains a global block identifier, block minima and maxima, and
an adjacency list of neighboring blocks that share a face, edge, or
vertex with the block in question. Hence, only local information
about the blocks assigned to a process and their adjacent neigh-
bors is stored at each process, minimizing memory overhead. When
blocks are re-assigned to a new process for load balancing, the row
in Figure 1 corresponding to the block that is being reassigned is
transferred to the new owner, along with the data in the block.

Applications provide DIY with MPI data types or callback func-
tions that create MPI data types for their custom application data
structures. Mapping automatic types to an MPI data type is trivial;
for example, a C int corresponds to MPI INT. Arrays and simple
data structures are also easy to map to an MPI data type; but, in
general, users can have complex data structures that require effort
in order to convert to corresponding MPI equivalents. Some tools
for automating this task exist; AutoMap [23] is one example.

Our rationale in choosing MPI data types for our data model
was generality; not only does our approach accommodate all data
structures supported by the underlying programming language, but
users are also free to alter their data types in order to improve per-
formance. For example, a particular application that benefits from
custom packing and unpacking during messaging can define such
data types with MPI PACKED or MPI BYTE.

Figure 2 shows the overall structure of DIY. Through wrap-

pers for various languages, applications can call three different
modules–I/O, block management, and communication–each de-
scribed below.

3.2 I/O
All I/O to and from storage is performed in parallel. Supported
input file formats are raw, HDF5, and netCDF. Currently we sup-
port a regular structured grid in our prototype, and we are actively
developing adaptive and unstructured data models for future ver-
sions. We include in DIY the Block I/O Layer (BIL) [16] for block-
structured input. BIL provides an abstraction for reading multifile
and multivariate datasets by allowing processes to post requests for
blocks and then collectively operating on the entire block set. De-
pending on the nature of the requests, BIL can utilize I/O band-
width more efficiently than standard collective access. Further-
more, block-based requests which have ghost regions do not suffer
from redundant I/O because data replication is performed in mem-
ory.

An efficient parallel sorting utility based on the parallel sample
sort algorithm [2] is also included. Parallel sorting is a fundamental
operation to many distributed algorithms. In many rendering appli-
cations, objects need to be sorted in depth order before rendering.
Sorting is also a key operation in grouping together data items, for
example, grouping spatial points before performing temporal anal-
ysis. For some clustering algorithms, the cluster assignments must
be sorted and grouped before further analysis can occur.

Optimizing parallel sorting is difficult, primarily because of large
communication requirements. In our benchmark tests of sorting 2.6
billion random integers (10 GB), we scaled from a sorting time of
26.46 seconds at 128 processes down to 0.36 seconds at 32,768
processes. We measured a strong scaling efficiency of 67% at 8192
processes. (Tests were conducted on Argonne’s IBM Blue Gene/P
Intrepid machine.)

Just as many analysis algorithms begin by reading data from stor-
age, many conclude by writing their results to storage. Unlike input
data models that may be grouped into a finite number of types (for
example, structured grid, adaptive mesh, and so forth), the output
defined by the analysis task is custom to it and impossible to pre-
dict or categorize by a general-purpose library such as DIY. Hence,
we designed an output file model that allows complete generality
in the type of data being stored. It is assumed that the analysis al-
gorithm will assign higher-level semantic meaning to our generic
output model.

Figure 3 shows the output file structure, a binary format similar
to the BP format of ADIOS [21]. We support any MPI data type
and write a sequence of these data types, or “blocks,” where an
output block is the analysis output from a subdomain residing on
a process. These blocks can be of arbitrary length and can be dis-
tributed among processes in any arrangement. Each block can con-
tain an optional header with user-defined information about quan-
tities contained in the block, and so forth. A footer with indices to
the analysis blocks concludes the file.

3.3 Block Management
Block management consists of dividing the domain into smaller
pieces (blocks) and assigning collections of blocks to processes.
DIY can decompose the domain and assign blocks to processes, or
the user can describe an existing decomposition and block assign-
ment to DIY for in situ analysis. Although our blocks currently
are regular hexahedral subdomains of a structured grid, a block is
intended to be any subset of vertices in unstructured grids, particle
data, and so forth, and we are working to implement such generic
blocks.

The number of blocks is greater than or equal to the number of
processes. Blocks and all later operations on them can be 2D, 3D,
or 4D. For example, a 3D time-varying dataset can be divided into
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Figure 3: The output file is a list of analysis blocks containing arbitrary
data structures. Among processes, output blocks need not be uni-
form in size or number. Each block contains an optional header that
contains user-defined data such as quantities, sizes, and so forth, to
assist in further processing of blocks. A footer contains indices to all
of the blocks, as well as their total number. All output is contained in
a single binary file.

4D (x,y,z, t) blocks. Data values can be of various types and lengths
through the use of generic containers and templates in DIY.

Once blocks are formed, they are assigned to processes. Cur-
rently, DIY creates a default block assignment that is cyclic (round-
robin), with one or more blocks per process. Each block is owned
by a single process, although block replication for load balancing is
an idea that we are considering. The assignment module also man-
ages the dynamic reassignment of blocks to processes. This is used
for dynamic load balancing in conjunction with the Zoltan parallel
services library [9].

3.4 Communication
Section 2.1 demonstrated the need for global reduction and local
neighborhood communication in analysis algorithms, and we ex-
plain those communication patterns in detail here. Because the as-
signment of blocks to processes is configurable, it helps to think
of communication as occurring between blocks instead of between
processes. Depending on the block-to-process assignment, DIY
then translates block identifiers to process identifiers and packages
items going to the same process into a single message.

Figure 4 shows the three communication algorithms imple-
mented in DIY. All three diagrams demonstrate two rounds of infor-
mation exchange among 16 blocks. The upper image exemplifies
neighborhood communication; the center image is global reduction
with swapping, and the bottom image shows an instance of global
reduction with merging. The local neighborhood algorithm is a
nonblocking message exchange among nearest-neighboring blocks
that is based on the algorithm in [26]. Our focus in this paper is on
the reduction algorithms, in particular on reduction with merging.

Reduction can be complete, where all blocks have communicated
directly or indirectly with all other blocks, or partial, where this is
not the case. The center and bottom panels of Figure 4 show exam-
ples of global reduction in two rounds with k-values of k = [4, 2].
The k-values define the group size in each round, as in [25]. Since
the product of the k-values is less than the number of blocks, these
are partial reductions. The shaded regions indicate communication
groups in each round, and arrows indicate message transfer. In the
swap algorithm this message transfer is bidirectional; while in the
merge algorithm it is unidirectional.

A swapping-based reduction (center panel of Figure 4) is appro-
priate for analyses where the results can easily be partitioned among
receiving blocks. This is the case in image compositing, where the
image is split into pieces and exchanged; the Radix-k algorithm was
introduced in [25] for this purpose. Other analyses result in unstruc-
tured or irregular output that cannot be arbitrarily segmented. The
Morse-Smale complex, for instance, is a collection of nodes, arcs,
and geometry that must remain intact in order for its structure to be
preserved. A tree-based merge algorithm is needed for those cases.

In our merge algorithm (bottom panel of Figure 4), we applied
the configurability of Radix-k to tree-based merging. By specify-
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Figure 4: Three communication patterns: two rounds of (top) lo-
cal nearest-neighbor communication, (center) global reduction with
swapping, and (bottom) global reduction with merging among 16
blocks.

ing the number of rounds and the k-values in each round, the size
of communicating groups can be adjusted to maximize the bisec-
tion bandwidth of the network without causing network contention.
Different k-values can be selected based on the underlying archi-
tecture and the size of the blocks being transmitted. The ability to
select between complete merging and degrees of partial merging is
a natural outcome of this configurable scheme. Another feature of
our implementation is the use of nonblocking messaging in order to
overlap the merge computation as much as possible with the merge
communication.
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Algorithm 1 Merge algorithm
1: for all rounds do
2: for all active blocks do
3: identify other blocks in same group as this block
4: select one block of the group to be the root block
5: if block is not root of this group then
6: post asynchronous send to the root block
7: mark block as inactive
8: else . root block of the group
9: for all other blocks in this group do

10: post asynchronous receive
11: end for
12: end if
13: end for
14: wait for sends/receives to complete
15: for all root blocks do
16: collect blocks in this group
17: call user-defined merge operation
18: end for
19: end for
20: return merged root blocks

In the merge algorithm, the pseudocode listed in Algorithm 1
is executed by each process, which owns some number of local
blocks. Within each round (the outermost loop encompassing lines
1-19), two inner loops are performed. The first is over the blocks
that have not already been merged into a larger block, or active
blocks (lines 2-13). In this loop, blocks are clustered into commu-
nicating groups of size ki, where ki is the group size of the round
i. One block is designated to be the root and takes ownership of
the merged result of that group; other blocks in the group are sent
to the root. The second loop (lines 15-18) iterates over the groups
(identified by their root block) and computes the merged result for
each group.

We analyze the communication complexity of Algorithm 1 in
terms of the total number of sequential messages sent or received,
since, in general, we cannot make any assumptions about the size of
the actual messages being transmitted. If we begin with one block
per process, there will be no more than one active block per process
in any round. Because groups within the same round are executed
in parallel, only the number of messages received by the root in one
group per round are counted, or ∑

r
i=1 ki −1, where r is the number

of rounds and ki is the k-value of the ith round.
This is an upper bound, because the use of nonblocking com-

munication allows multiple messages in each round to overlap and
to potentially complete in less than ki − 1 steps. Selecting larger
values of ki, thus lowering the number of rounds needed, is advis-
able provided that ki is not so large as to cause network contention.
The computational complexity is also a function of the number of
rounds. The actual steps within the merge operator are unknown,
so we only count the number of calls to the merge operation in line
17 of Algorithm 1, which is r.

When the initial number of blocks is greater than the number of
processes, several root blocks will reside on some processes and
will incur additional sequential steps for both communication and
computation. Depending on the initial number of blocks and pro-
cesses, a distribution such as round-robin could result in an uneven
distribution of root blocks to processes. In the worst case, all roots
could be on the same process. We did not address this problem in
this work and limited our use of the merge algorithm to one block
per process.

4 USAGE AND CASE STUDIES

We have successfully parallelized particle tracing for vector flow
visualization and the computation of the Morse-Smale complex for

Figure 5: Two analysis techniques for locating the turbulent regions
in flame stabilization. Streamlines in the top image are primarily in
the x-direction, except for the turbulent region with velocity in the y
and z directions. The same region is identified in the Morse-Smale
complex in the lower image.

topological analysis by using a common set of library components.
In this section, we demonstrate how DIY supports both these tasks
and present some of our findings.

In both examples, we use the same combustion dataset: fuel jet
combustion in the presence of an external cross-flow [13]. The
flame is stabilized in the jet wake, and the formation of vortices
at the jet edges enhances mixing. Our data were generated by the
S3D [4] fully compressible Navier-Stokes flow solver and are cour-
tesy of Ray Grout of the National Renewable Energy Laboratory
and Jacqueline Chen of Sandia National Laboratories. We used one
time-step at a spatial resolution of 1408× 1080× 1100. The vec-
tor version for parallel flow visualization is 19 GB (32-bit floating-
point values for the x, y, and z vector components) while the scalar
version for the parallel Morse-Smale complex is only the x compo-
nent of the velocity, or 6.3 GB.

Scientists such as Grout and Chen are looking at the area of in-
tense turbulence due to the interaction of the jet and boundary layer.
The region of interest can be identified by interacting with the flow
visualization, navigating the view until the image in the top of Fig-
ure 5 emerges. Alternatively, this region is revealed in the topolog-
ical analysis in the bottom of Figure 5. The Morse-Smale complex
indicates regions of minimum x-velocity in this example, in other
words, where the flow diverges from the laminar x-direction pat-
tern.
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4.1 Parallelizing Applications
We designed a C-style API that can be used in both C and C++
programs, with plans for Fortran bindings if they are needed. The
following is a description of how the API is used in our two example
applications. Both particle tracing and computation of the Morse-
Smale complex begin by subdividing the domain into blocks and
assigning blocks to processes. This is accomplished by using DIY’s
initialization and decomposition functions:

DIY_Init(dim, ROUND_ROBIN_ORDER, tot_blocks,
&nblocks, data_size, MPI_COMM_WORLD);

DIY_Decompose(share_face, ghost, ghost_dir,
given);

DIY Init takes as input the dimensionality, total number of
blocks, and data size and outputs the local number of blocks as-
signed to this process. DIY Decompose takes information about
the overlap between blocks and any constraints on the decomposi-
tion and decomposes the domain accordingly.

The dataset is then read in parallel from storage. Each process
posts read requests for its local blocks, and then the blocks are all
read collectively from disk.

for (i = 0; i < nblocks; i++) {
DIY_Block_starts_sizes(i, min, size);
DIY_Read_add_block_raw(min, size, infile,
datatype, data);

}
DIY_Read_blocks_all();

Each process then does its local analysis. This is a fourth-order
Runge-Kutta integration in the case of particle tracing, and the com-
putation of a discrete gradient field and subsequent complex con-
struction for the Morse-Smale complex example. This custom anal-
ysis is provided by the user, in keeping with the DIY philosophy.

The communication for parallel particle tracing is a nearest-
neighbor exchange enacted by the following calls.

DIY_Exchange_neighbors(items, wait_factor,
recv_item_func, send_item_func);

...
DIY_Flush_neighbors(items, recv_item_func);

The callback functions for creating an MPI data type for sent and
received items are provided as input arguments. The received items
are returned as the output. Any remaining communication, after all
rounds of exchanging neighboring items are completed, is flushed.

In Morse-Smale analysis, the communication is a global merge
and is initiated as follows.

DIY_Merge_blocks(in_blocks, num_in_blocks,
out_blocks, num_rounds, k_values,
&merge_func, &item_func, &type_func,
&num_out_blocks);

The input arguments include the local data, number of merge
rounds, k-values in each round, and callback functions to perform
the merge operation and to create MPI data types for communica-
tion. The merged output blocks are returned.

Both applications then write their analysis results in parallel to
storage:

DIY_Write_open_all(outfile);
DIY_Write_blocks_all(out_blocks,

num_out_blocks, datatype);
DIY_Write_close_all();

4.2 Performance Results
Figure 6 shows the comparative parallel performance of particle
tracing and the Morse-Smale computation. Both tests include read-
ing the dataset from storage, computing the analysis, and writing
results back to storage. Total time and strong scaling efficiency are
shown for the overall end-to-end program execution. We also com-
pare relative performance between the two analyses. Tests were
run on Intrepid, a 557-teraflop IBM Blue Gene/P supercomputer
operated by the Argonne Leadership Computing Facility (ALCF)
at Argonne National Laboratory.

For particle tracing, we advected 0.5 million particles in the
flame stabilization dataset. The total output produced was approx-
imately 8 GB of particle traces. A small subset of these is shown
in the top of Figure 5, but the dense seeding in our test is useful for
other downstream analysis, such as computing Lagrangian coher-
ent structures [11]. We used four blocks per process and required
each particle to advance at least 1,000 integration steps, or until it
left the overall volume bounds. In total, approximately 500 million
advection steps were executed. The data size is not large enough
to scale efficiently beyond 2048 processes; but from 256 to 2,048
processes, we maintained 41% end-to-end strong scaling efficiency.

The Morse-Smale complex is computed in parallel for the x
component of the flame velocity. The required steps are reading
the dataset from storage, locally computing the discrete gradient
field and the Morse-Smale complex, merging local complexes into
a smaller number of larger ones, and writing the results out to stor-
age. We used one block per process and reduced the number of
blocks by a factor of 8 during the merging, before writing the com-
plexes to disk. The output complexes were relatively sparse, as the
bottom of Figure 5 shows, just over 100 MB. Approximately 80%
end-to-end strong scaling efficiency was attained from 256 to 4,096
processes.

The Morse-Smale analysis scales better than particle tracing for
several reasons. Global reduction often involves fewer communi-
cation phases than nearest-neighbor exchange because the reduc-
tion algorithm runs in O(logk) number of rounds. Morse-Smale
also produces a sparse output in this example, targeting the regions
of minimum x-component velocity. Hence, the output size of the
Morse-Smale complex is 80 times smaller than the output of the
particle traces. Particle tracing generates a dense output, but the
majority of streamlines travel uniformly in the x-direction and mask
the region of interest, whereas the Morse-Smale complex uncovers
precisely this region while culling away areas of uniform flow.

Another reason for Morse-Smale’s better scalability is evident in
Figure 7. The distribution of time in this graph shows that this par-
ticular test of the Morse-Smale complex is compute-bound. Since
the computational part is strictly local, it scales easily. Figure 7
also shows that other components of the overall time such as input
and output I/O are beginning to take a larger percentage of the to-
tal time as the number of processes grows. We have also seen this
trend continuing at larger scales with larger test data.

The merge phase remains at under 3% of the total time over this
entire test, which also contributes to the overall efficiency. It should
be noted, however, that this is a partial merge of one round, and
more rounds or a complete merge would require a larger fraction
of the total time. In this test, however, one round was sufficient to
merge the output to a manageable size and to extract the features
shown in Figure 5.

5 SUMMARY

We presented a core set of building blocks for constructing paral-
lel analysis applications, in particular, for scalable data movement.
These building blocks are implemented in a prototype library called
DIY that allows computational and computer scientists to focus on
writing custom analysis while leaving domain decomposition, pro-
cess assignment, I/O, and communication to DIY. After surveying
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the data movement needs of several analysis tasks, we demonstrated
the use of our library in two of those applications: parallel particle
tracing and parallel topology generation. Our solution enables the
writing of different parallel analyses from the same building blocks.
This presents scientists with different views of the same data and
enables comparison between different techniques.

5.1 Discussion
Tools for data movement are necessary for highly-scalable anal-
ysis applications. Our solution is a departure from other ap-
proaches to analysis that include full-featured toolkits, analysis
languages, asynchronous background characterization, and fixed-
function pipelines. We focus on the central bottleneck in data analy-
sis: presenting processes with the data they need in order to do their
work. This is a fundamental issue that all parallel problems face as
they scale up; by targeting parallel data analysis, we concentrate on
the specific ways that analysis algorithms access data: through par-
allel I/O, local neighborhood communication, and global reduction.

A fundamental design decision is what data types or data models

to support. One outcome of our examination of analysis algorithms
was the need to read, write, and communicate any data structure that
could be defined in C/C++/Fortran. Hence, the design of DIY de-
fines data in terms of MPI data types, which mirror all of the built-
in and user-defined language constructs. For example, our particle
tracer defines a particle as the following C/C++ struct:

struct Particle {
float[4] pt; // particle position
int steps; // # of steps thus far

};

The consequence of this design decision is that the programmer
must generate corresponding MPI data types. In the above example,
this required 11 lines of C++ code:

MPI_Datatype types[2];
int lengths[2];
MPI_Aint displs[2];
types[0] = MPI_FLOAT;
displs[0] = offsetof(struct Item, pt);
lengths[0] = 4;
types[1] = MPI_INT;
displs[1] = offsetof(struct Item, steps);
lengths[1] = 1;
MPI_Datatype *dtype = new MPI_Datatype;
MPI_Type_create_struct(2, lengths,

displs, types, dtype);

The Morse-Smale data type is considerably more complicated.
It is a hierarchical organization of nodes, arcs, and geometry. The
structures comprise 35 total fields, some containing pointers to dy-
namically allocated memory. Constructing the MPI data type for
the Morse-Smale complex was by no means trivial and required
writing approximately 130 lines of C++ code.

5.2 Future Work
We recognize the need for and welcome additional work in
lightweight analysis infrastructures such as DIY. Our plans include
applying data movement techniques to the other analyses in our sur-
vey. We will add domain decomposition for unstructured and adap-
tive grids to our library. Furthermore, we will investigate whether
support for a hybrid parallelization model consisting of message
passing between nodes and shared-memory threading inside nodes
should be supported by DIY. Currently, we leave it to the applica-
tion to manage thread parallelism as part of its local computation.

We continue to re-evaluate support for higher-level data models
in DIY. Currently the application translates its data model into a
low-level data type that DIY understands. This is in keeping with
our design philosophy of allowing the application to use any in-
memory or on-disk data model, without restriction. This is also
efficient in run time and memory space because it minimizes data
copying. To make this solution more usable, however, we encour-
age a renewed effort in the automated generation of MPI data types
from source-code data structures or the development of intermedi-
ate data description tools to bridge the gap between application data
models and DIY data types.
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