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INCE THE ADVENT OF COMPUTING, the world has experi-
enced an information “big bang”: an explosion of data. 
The amount of information being created is increasing at 
an exponential rate. Since 2003, digital information has 

accounted for 90 percent of all information produced [1], vastly 
exceeding the amount of information on paper and on film. One of 
the greatest scientific and engineering challenges of the 21st cen-
tury will be to understand and make e!ective use of this growing 
body of information. Visual data analysis, facilitated by interactive 
interfaces, enables the detection and validation of expected results 
while also enabling unexpected discoveries in science. It allows 
for the validation of new theoretical models, provides comparison 
between models and datasets, enables quantitative and qualitative 
querying, improves interpretation of data, and facilitates decision 
making. Scientists can use visual data analysis systems to explore 
“what if” scenarios, define hypotheses, and examine data using 
multiple perspectives and assumptions. They can identify con-
nections among large numbers of attributes and quantitatively as-
sess the reliability of hypotheses. In essence, visual data analysis 
is an integral part of scientific discovery and is far from a solved 
problem. Many avenues for future research remain open. In this 
article, we describe visual data analysis topics that will receive at-
tention in the next decade [2, 3].

Visualization for  
Data-Intensive Science
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VISUS: PROGRESSIVE STREAMING FOR SCALABLE DATA EXPLORATION

In recent years, computational scientists with access to the world’s largest super-
computers have successfully simulated a number of natural and man-made phe-
nomena with unprecedented levels of detail. Such simulations routinely produce 
massive amounts of data. For example, hydrodynamic instability simulations per-
formed at Lawrence Livermore National Laboratory (LLNL) in early 2002 produced 
several tens of terabytes of data, as shown in Figure 1. This data must be visualized 
and analyzed to verify and validate the underlying model, understand the phenom-
enon in detail, and develop new insights into its fundamental physics. Therefore, 
both visualization and data analysis algorithms require new, advanced designs that 
enable high performance when dealing with large amounts of data.

Date-streaming techniques and out-of-core computing specifically address the 
issues of algorithm redesign and data layout restructuring, which are necessary to 
enable scalable processing of massive amounts of data. For example, space-filling 
curves have been used to develop a static indexing scheme called ViSUS,1 which 
produces a data layout that enables the hierarchical traversal of [EQUATION]- 
dimensional regular grids. Three features make this approach particularly attrac-
tive: (1) the order of the data is independent of the parameters of the physical 
hardware (a cache-oblivious approach), (2) conversion from Z-order used in clas-
sical database approaches is achieved using a simple sequence of bit-string ma-
nipulations, and (3) it does not introduce any data replication. This approach has 

FIGURE 1. 

Interactive visualization of four timesteps of the [EQUATION] simulation of a Rayleigh-Taylor 
instability. Gravity drives the mixing of a heavy fluid on top of a lighter one. Two envelope surfaces 
capture the mixing region. 

1 www.pascucci.org/visus



153THE FOURTH PARADIGM

been used for direct streaming and real-time monitoring of large-scale simulations 
during execution [10].

Figure 2 shows the ViSUS streaming infrastructure streaming LLNL simulation 
codes and visualizing them in real time on the Blue Gene/L installation at the Su-
percomputing 2004 exhibit (where Blue Gene/L was introduced as the new fastest 
supercomputer in the world). The extreme scalability of this approach allows the 
use of the same code base for a large set of applications while exploiting a wide 
range of devices, from large powerwall displays to workstations, laptop computers, 
and handheld devices such as the iPhone. 

Generalization of this class of techniques to the case of unstructured meshes 
remains a major problem. More generally, the fast evolution and growing diver-
sity of hardware pose a major challenge in the design of software infrastructures 
that are intrinsically scalable and adaptable to a variety of computing resources 
and running conditions. This poses theoretical and practical questions that future 
researchers in visualization and analysis for data-intensive applications will need 
to address.

VISTRAILS: PROVENANCE AND DATA EXPLORATION

Data exploration is an inherently creative process that requires the researcher to 

FIGURE 2. 

Scalability of the ViSUS infrastructure, which is used for visualization in a variety of applications 
(such as medical imaging, subsurface modeling, climate modeling, microscopy, satellite imaging, 
digital photography, and large-scale scientific simulations) and with a wide range of devices (from 
the iPhone to the powerwall). 
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locate relevant data, visualize the data and discover relationships, collaborate with 
peers while exploring solutions, and disseminate results. Given the volume of data 
and complexity of analyses that are common in scientific exploration, new tools are 
needed and existing tools should be extended to better support creativity.

The ability to systematically capture provenance is a key requirement for these 
tools. The provenance (also referred to as the audit trail, lineage, or pedigree) of a 
data product contains information about the process and data used to derive the 
data product. The importance of keeping provenance for data products is well rec-
ognized in the scientific community [4, 5]. It provides important documentation 
that is key to preserving the data, determining its quality and authorship, and re-
producing and validating the results. The availability of provenance also supports 
reflective reasoning, allowing users to store temporary results, make inferences 
from stored knowledge, and follow chains of reasoning backward and forward.

VisTrails2 is an open source system that we designed to support exploratory 
computational tasks such as visualization, data mining, and integration. VisTrails 
provides a comprehensive provenance management infrastructure and can be eas-
ily combined with existing tools and libraries. A new concept we introduced with 
VisTrails is the notion of provenance of workflow evolution [6]. In contrast to previous 
workflow and visualization systems, which maintain provenance only for derived 
data products, VisTrails treats the workflows (or pipelines) as first-class data items 
and keeps their provenance. VisTrails is an extensible system. Like workflow sys-
tems, it allows pipelines to be created that combine multiple libraries. In addition, 
the VisTrails provenance infrastructure can be integrated with interactive tools, 
which cannot be easily wrapped in a workflow system [7]. 

Figure 3 shows an example of an exploratory visualization using VisTrails. In 
the center, the visual trail, or vistrail, captures all modifications that users apply 
to the visualizations. Each node in the vistrail tree corresponds to a pipeline, and 
the edges between two nodes correspond to changes applied to transform the par-
ent pipeline into the child (e.g., through the addition of a module or a change to a 
parameter value). The tree-based representation allows a scientist to return to a 
previous version in an intuitive way, undo bad changes, compare workflows, and be 
reminded of the actions that led to a particular result. 

Ad hoc approaches to data exploration, which are widely used in the scientific 
community, have serious limitations. In particular, scientists and engineers need 

2 http://vistrails.sci.utah.edu
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to expend substantial e!ort managing data (e.g., scripts that encode computational 
tasks, raw data, data products, images, and notes) and need to record provenance 
so that basic questions can be answered, such as: Who created the data product 
and when? When was it modified, and by whom? What process was used to create 
it? Were two data products derived from the same raw data? This process is not 
only time consuming but error prone. The absence of provenance makes it hard 
(and sometimes impossible) to reproduce and share results, solve problems collab-
oratively, validate results with di!erent input data, understand the process used to 
solve a particular problem, and reuse the knowledge involved in the data analysis 
process. It also greatly limits the longevity of the data product. Without precise and 
su"cient information about how it was generated, its value is greatly diminished. 
Visualization systems aimed at the scientific domain need to provide a flexible 

FIGURE 3. 

An example of an exploratory visualization for studying celestial structures derived from cosmo-
logical simulations using VisTrails. Complete provenance of the exploration process is displayed as 
a “vistrail.” Detailed metadata are also stored, including free-text notes made by the scientist, the 
date and time the workflow was created or modified, optional descriptive tags, and the name of the 
person who created it.
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framework that not only enables scientists to perform complex analyses over large 
datasets but also captures detailed provenance of the analysis process. 

Figure 4 shows ParaView3 (a data analysis and visualization tool for extreme-

FIGURE 4. 

Representing provenance as a series of actions that modify a pipeline makes visualizing the di!er-
ences between two workflows possible. The di!erence between two workflows is represented in a 
meaningful way, as an aggregation of the two. This is both informative and intuitive, reducing the 
time it takes to understand how two workflows are functionally di!erent.

3 www.paraview.org
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ly large datasets) and the VisTrails Provenance Explorer transparently capturing 
a complete exploration process. The provenance capture mechanism was imple-
mented by inserting monitoring code in ParaView’s undo/redo mechanism, which 
captures changes to the underlying pipeline specification. Essentially, the action 
on top of the undo stack is added to the vistrail in the appropriate place, and undo 
is reinterpreted to mean “move up the version tree.” Note that the change-based 
representation is both simple and compact—it uses substantially less space than the 
alternative approach of storing multiple instances, or versions, of the state.

FLOW VISUALIZATION TECHNIQUES

A precise qualitative and quantitative assessment of three-dimensional transient 
flow phenomena is required in a broad range of scientific, engineering, and medical 
applications. Fortunately, in many cases the analysis of a 3-D vector field can be re-
duced to the investigation of the two-dimensional structures produced by its interac-
tion with the boundary of the object under consideration. Typical examples of such 
analysis for fluid flows include airfoils and reactors in aeronautics, engine walls and 
exhaust pipes in the automotive industry, and rotor blades in turbomachinery.

Other applications in biomedicine focus on the interplay between bioelectric 
fields and the surface of an organ. In each case, numerical simulations of increas-
ing size and sophistication are becoming instrumental in helping scientists and 
engineers reach a deeper understanding of the flow properties that are relevant to 
their task. The scientific visualization community has concentrated a significant 
part of its research e!orts on the design of visualization methods that convey local 
and global structures that occur at various spatial and temporal scales in transient 
flow simulations. In particular, emphasis has been placed on the interactivity of the 
corresponding visual analysis, which has been identified as a critical aspect of the 
e!ectiveness of the proposed algorithms.

A recent trend in flow visualization research is to use GPUs to compute image 
space methods to tackle the computational complexity of visualization techniques 
that support flows defined over curved surfaces. The key feature of this approach 
is the ability to e"ciently produce a dense texture representation of the flow with-
out explicitly computing a surface parameterization. This is achieved by projecting 
onto the image plane the flow corresponding to the visible part of the surface, al-
lowing subsequent texture generation in the image space through backward inte-
gration and iterative blending. Although the use of partial surface parameterization 
obtained by projection results in an impressive performance gain, texture patterns 
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stretching beyond the visible part of the self-occluded surface become incoherent 
due to the lack of full surface parameterization. 

To address this problem, we have introduced a novel scheme that fully supports 
the creation of high-quality texture-based visualizations of flows defined over ar-
bitrary curved surfaces [8]. Called Flow Charts, our scheme addresses the issue 
mentioned previously by segmenting the surface into overlapping patches, which 
are then individually parameterized into charts and packed in the texture domain. 
The overlapped region provides each local chart with a smooth representation of its 
direct vicinity in the flow domain as well as with the inter-chart adjacency infor-
mation, both of which are required for accurate and non-disrupted particle advec-
tion. The vector field and the patch adjacency relation are naturally represented 
as textures, enabling e"cient GPU implementation of state-of-the-art flow texture 
synthesis algorithms such as GPUFLIC and UFAC. 

Figure 5 shows the result of a simulation of a high-speed German Intercity- 
Express (ICE) train traveling at a velocity of about 250 km/h with wind blowing 
from the side at an incidence angle of 30 degrees. The wind causes vortices to form 
on the lee side of the train, creating a drop in pressure that adversely a!ects the 
train’s ability to stay on the track. These flow structures induce separation and 
attachment flow patterns on the train surface. They can be clearly seen in the pro-
posed images close to the salient edges of the geometry. 

FIGURE 5. 

Simulation of a high-speed ICE train. Left: The GPUFLIC result. Middle: Patch configurations. 
Right: Charts in texture space.
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The e!ectiveness of a physically based formulation can be seen with the  
=Karman= dataset (Figure 6), a numerical simulation of the classical Von Kármán 
vortex street phenomenon, in which a repeating pattern of swirling vortices 
is caused by the separation of flow passing over a circular-shaped obstacle. The  
visualization of dye advection is overlaid on dense texture visualization that shows 
instantaneous flow structures generated by GPUFLIC. The patterns generated by 
the texture-advection method are hazy due to numerical di!usion and loss of mass. 
In a level-set method, intricate structures are lost because of the binary dye/back-
ground threshold. Thanks to the physically based formulation [9], the visualization 
is capable of accurately conveying detailed structures not shown using the tradi-
tional texture-advection method.

FUTURE DATA-INTENSIVE VISUALIZATION CHALLENGES

Fundamental advances in visualization techniques and systems must be made to 
extract meaning from large and complex datasets derived from experiments and 
from upcoming petascale and exascale simulation systems. E!ective data analysis 
and visualization tools in support of predictive simulations and scientific knowl-
edge discovery must be based on strong algorithmic and mathematical foundations 

FIGURE 6. 

Visualization of the =Karman= dataset using dye advection. Left column: Physically based dye 
advection. Middle column: Texture advection method. Right column: Level-set method. The time 
sequence is from top to bottom.
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and must allow scientists to reliably characterize salient features in their data. New 
mathematical methods in areas such as topology, high-order tensor analysis, and 
statistics will constitute the core of feature extraction and uncertainty modeling 
using formal definition of complex shapes, patterns, and space-time distributions. 
Topological methods are becoming increasingly important in the development of 
advanced data analysis because of their expressive power in describing complex 
shapes at multiple scales. The recent introduction of robust combinatorial tech-
niques for topological analysis has enabled the use of topology—not only for pre-
sentation of known phenomena but for the detection and quantification of new 
features of fundamental scientific interest.

Our current data-analysis capabilities lag far behind our ability to produce simu-
lation data or record observational data. New visual data analysis techniques will 
need to dynamically consider high-dimensional probability distributions of quanti-
ties of interest. This will require new contributions from mathematics, probability, 
and statistics. The scaling of simulations to ever-finer granularity and timesteps 
brings new challenges in visualizing the data that is generated. It will be crucial to 
develop smart, semi-automated visualization algorithms and methodologies to help 
filter the data or present “summary visualizations” to enable scientists to begin ana-
lyzing the immense datasets using a more top-down methodological path. The abil-
ity to fully quantify uncertainty in high-performance computational simulations 
will provide new capabilities for verification and validation of simulation codes. 
Hence, uncertainty representation and quantification, uncertainty propagation, 
and uncertainty visualization techniques need to be developed to provide scientists 
with credible and verifiable visualizations.

New approaches to visual data analysis and knowledge discovery are needed to 
enable researchers to gain insight into this emerging form of scientific data. Such 
approaches must take into account the multi-model nature of the data; provide the 
means for scientists to easily transition views from global to local model data; al-
low blending of traditional scientific visualization and information visualization; 
perform hypothesis testing, verification, and validation; and address the challenges 
posed by the use of vastly di!erent grid types and by the various elements of the 
multi-model code. Tools that leverage semantic information and hide details of 
dataset formats will be critical to enabling visualization and analysis experts to 
concentrate on the design of these approaches rather than becoming mired in the 
trivialities of particular data representations [11].
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