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Abstract—With the exponential growth in size of geometric data, it is becoming increasingly important to make effective use of
multilevel caches, limited disk storage, and bandwidth. As a result, recent work in the visualization community has focused either on
designing sequential access compression schemes or on producing cache-coherent layouts of (uncompressed) meshes for random
access. Unfortunately combining these two strategies is challenging as they fundamentally assume conflicting modes of data access.
In this paper, we propose a novel order-preserving compression method that supports transparent random access to compressed
triangle meshes. Our decompression method selectively fetches from disk, decodes, and caches in memory requested parts of a
mesh. We also provide a general mesh access API for sesamless mesh traversal and incidence queries. While the method imposes no
particular mesh layout, it is especially suitable for cache-oblivious layouts, which minimize the number of decompression 1/O requests
and provide high cache utilization during access to decompressed, in-memory portions of the mesh. Moreover, the transparency of
our scheme enables improved performance without the need for application code changes. We achieve compression rates on the
order of 20:1 and significantly improved 1/O performance due to reduced data transfer. To demonstrate the benefits of our method, we
implement two common applications as benchmarks. By using cache-oblivious layouts for the input models, we observe 2—6 times

overall speedup compared to using uncompressed meshes.

Index Terms—Mesh compression, random access, cache-coherent layouts, mesh data structures, external memory algorithms.

1 INTRODUCTION

Among the key challenges in visualization is how to effectively man-
age, process, and display large geometric data sets from scientific sim-
ulation, computer-aided design, and remote sensing. Today’s unstruc-
tured meshes measure hundreds of millions of elements and require
gigabytes of storage, often greatly exceeding available memory and
rendering resources. A compounding factor to this problem is the in-
creasing mismatch between processing performance and the rate at
which data can be fed to the CPU and GPU, which is limited by la-
tency and bandwidth [40]. As a result, multilevel caching schemes are
commonly employed, with successively smaller but faster caches that
provide reduced latency. Such caching schemes are effective as long
as there is a reasonably close match between data organization and ac-
cess patterns. Since access patterns on meshes are usually localized,
recent work in the visualization community has focused on coherent
organization of meshes and other data [4,5,7,11,16,27,34,41,42].

Data compression is a complementary approach to reducing band-
width requirements. Whereas mesh compression has traditionally
been used to reduce on-disk storage or transmission time over slow
networks, recent work has explored the possibility of trading under-
utilized computing power for higher effective disk bandwidth through
on-line compression [6,29].

For large data sets, the access pattern of the application also signif-
icantly influences its performance. The concept of windowed stream
processing was recently proposed for I/O-efficient access to large com-
pressed meshes [19]. However this approach requires restructuring the
computation to match the data layout, which is not always possible or
even desirable, e.g. when direct access to small subsets of the data is
needed. The main competing approach is to keep a raw on-disk mesh
data structure that supports random access [9, 10, 18,28,36,42]. How-
ever such data structures usually require a significant amount of disk
space: up to 40 times more space than compressed meshes [19]. The
added bandwidth requirements of such verbose representations often
negate the benefits of organizing the meshes to support random access.

Unfortunately, combining compression with coherent data layout is
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nontrivial. Conventional mesh compression schemes [1,31, 38] max-
imize compression by reordering the data as a canonical permutation,
which destroys any layout designed for cache coherence. Streaming
mesh compression [20] avoids such reordering by also encoding the
layout, but restricts decompression to sequential access: to access an
element late in the stream, the entire stream up to that element must be
decoded, which can be prohibitive for large files. To address this, new
schemes have emerged that support selective access to small patches
of the compressed mesh [8,23]. However, these methods are mainly
designed for rendering applications; they do not preserve the mesh
layout nor support seamless mesh access across patch boundaries.

Main results: In this paper we present a new order-preserving tri-
angle mesh compression algorithm that supports random access to the
underlying compressed mesh. Our method selectively fetches, decom-
presses, and caches the requested parts of the mesh in main memory,
possibly after paging out data not recently accessed. The compres-
sor preserves the original, possibly cache-coherent triangle layout, and
hence allows optimizing the layout for different modes of access—
even for sequential streaming computations. Our decompressor pro-
vides direct access to individual vertices and triangles via their global
indices in their respective layouts, and exposes to the visualization ap-
plication a conventional mesh data structure API for transparent access
to mesh elements and their neighborhoods. Although we do not main-
tain the entire mesh and full neighboring information in main mem-
ory, we ensure that correct connectivity is constructed for all mesh
elements requested by the application. Using layouts with good lo-
cality, we achieve compression ratios around 20:1 and speedups as
high as 6:1 in out-of-core visualization applications, compared to ac-
cessing the same uncompressed external memory data structure. In
particular, we find that cache-oblivious mesh layouts [41,42] result in
good compression, high disk cache utilization and thus a small mem-
ory footprint, high decompression throughput, and good locality for
lower-level in-memory caching compared with other tested layouts.

2 RELATED WORK

In this section we review published work related to mesh compression
and compression methods that support random access.

2.1 Mesh Compression

Mesh compression has been well researched over the last decade
and excellent surveys are available [2, 13]. At a high level, con-
nectivity compressors may be classified as vertex-based (or valence-
based) [1, 38], edge-based [21, 26], or face-based [14, 31], depending
on the mesh element type that drives the compression. Our order-
preserving method belongs to the class of face-based compressors.



Most previous mesh compression schemes were designed to
achieve maximum compression as they were targeted for archival use
or transmission. They achieved this goal by encoding vertices, edges,
and faces in a particular order agreed upon by encoder and decoder
such that the mesh layout itself would not have to be transmitted. Be-
cause many applications are not affected by the ordering of mesh ele-
ments, such reordering is often acceptable.

Recently, Isenburg et al. [20] introduced a streaming compression
scheme for triangle meshes built on top of their streaming mesh repre-
sentation [19]. This compression method efficiently handles massive
models by directly encoding mesh elements in the order in which they
arrive, which obviates having to first create a complete uncompressed
mesh data structure to support traversal of the mesh in the designated
order. Our work is built on top of this streaming compression method
in order to both preserve the input order of triangles and to achieve
relatively high compression and decompression throughput.

2.2 Compression and Random Access

Most prior approaches to mesh compression do not directly provide
random access to the compressed data. To access a particular element,
the mesh must first be sequentially decompressed to an uncompressed
format (e.g. an indexed mesh format like PLY, or a mesh data structure
such as half-edge) that supports random access.

Multimedia and regular grids: Random access is one of the key
components of the MPEG video compression format that allows users
to browse video in a non-sequential fashion [25]. This is achieved
by periodically inserting “intra pictures” as access points in the com-
pressed stream, which allows bootstrapping the decompressor. Intra
pictures are compressed in isolation from other frames, and subsequent
frames are compressed by predicting the motion in between these in-
tra pictures. For regular volumetric grids, wavelet-based compression
methods [17,30] that support random access have been proposed.

Mesh and multi-resolution compression: Ho et al. [15] describe
an out-of-core technique that partitions large meshes into triangle clus-
ters small enough to fit in main memory, which are compressed inde-
pendently. Cluster boundaries are given special treatment to ensure
that decompressed clusters can be “stitched” together. Choe et al. [8]
proposed a random-accessible mesh compression technique primarily
targeted for selective rendering. As in [15], random access to the com-
pressed mesh is achieved by independently decompressing a requested
cluster, i.e. without having to decompress the whole mesh. There have
been a few multi-resolution compression methods that support random
access. Gobbetti et al. [12] proposed a compressed adaptive mesh rep-
resentation of regular grids for terrain rendering. They decompose the
regular grid into a set of chunks and apply wavelet-based lossy com-
pression to each chunk. Kim et al. [23] introduced a random access
compression technique for general multi-resolution triangle meshes
based on their earlier multi-resolution data structure [24].

Although these techniques provide coarse-grained random access
to compressed meshes, they are mainly targeted for selective access
in rendering applications, and do not provide a general mesh traversal
mechanism. On the other hand, our method transparently supports ran-
dom access to individual mesh elements and provides the connectivity
information needed by many mesh processing applications.

2.3 Cache Coherence

Cache-oblivious layouts of polygonal meshes and bounding volume
hierarchies have recently been introduced [41-43]. Contrary to cache-
aware layouts, e.g. [7,16,27,34], a cache-oblivious layout is not opti-
mized for a particular size cache, but exhibits good average-case per-
formance across multiple cache levels and access patterns. By main-
taining cache-oblivious layouts of triangles and vertices in our com-
pressed meshes, we achieve high cache utilization both to compressed
data fetched from disk and to uncompressed in-memory data.

3 OVERVIEW

In this section we briefly discuss some of the challenges of dealing
with massive models and present an overview of our approach.

3.1 Dealing with Massive Models

Applications such as iso-contouring and geodesic distance computa-
tion require random access to mesh geometry and connectivity. Such
applications access vertices and triangles in an order that generally dif-
fers from the order in which the mesh is stored. For large meshes, the
amount of information accessed may approach giga- or even terabytes
of data. As a consequence, large meshes are usually stored on disk, or
may even be fetched over a network. Since accessing remote data in an
arbitrary order can be very expensive, data access time often becomes
the major performance bottleneck in geometric applications.

Out-of-core data structures and algorithms: There have been
extensive research efforts to design out-of-core data structures and al-
gorithms to handle models larger than main memory [37]. These tech-
niques aim at loading only the data necessary to perform local compu-
tations, and at minimizing the number of I/O accesses. However, as the
gap between processing time and data access time increases, the time
spent loading even the necessary data on demand becomes expensive.

Cache coherence: Since cache misses in the various memory lev-
els (e.g., L1/L2 and main memory) are quite expensive compared to
the computational processing time, research has focused on reorganiz-
ing the data access pattern of applications (e.g. [3,19,39]) and on com-
puting data layouts (e.g. [41-43]) to minimize the number of cache
misses for coherent but unspecified access patterns. In particular, data
layout optimization can result in high cache utilization without hav-
ing to modify the algorithm or access pattern of the target applica-
tion, whereas computational reordering usually requires complete al-
gorithm and data structure re-design.

3.2 Our Approach

We propose a novel compression and decompression method that sup-
ports transparent and random access to compressed meshes suitable
for many geometric applications. Whereas we support truly “random”
access to any element of the mesh, we exploit the fact that most ge-
ometric applications access the mesh in a spatially coherent manner,
e.g., by walking the mesh from an element to one of its neighbors.
However, we neither assume nor impose any particular access pattern.
At a high level, our method has two major components: (1) cluster-
based order-preserving mesh compression, and (2) a runtime decom-
pression framework that transparently supports random access.

Cluster-based order-preserving compression: We compress a
mesh by sequentially accessing and grouping triangles in the order
they appear in the input mesh. Although our method does not require
a specific layout of a mesh, we propose to use cache-oblivious layouts
since they have exhibited superior cache utilization in a number of ap-
plications [41]. We also find that these cache-oblivious layouts result
in the best compression and runtime performance.

In order to provide random access to the compressed mesh, we
group vertices and triangles into a set of clusters. Each cluster con-
sists of a fixed number of consecutive triangles (e.g. a few thousand)
as well as the vertices first referenced by those triangles. The begin-
nings of the clusters serve as access points in our method, and each
atomic I/O request operates at cluster granularity.

Runtime decompression framework: Our decompression
framework provides efficient, but transparent and random access
to applications through a general mesh access APIL. Therefore,
applications can access the entire mesh as if it were memory resident.
Moreover, applications benefit directly from the improved I/O
performance provided by our decompressor without having to make
any application code changes since we provide a complete system for
loading, decompressing, caching, and paging-out of data. We assume
that applications access mesh vertices and triangles via a global index
through our mesh access API. When an element is requested, we
efficiently locate the cluster containing it, decompress the cluster, and
store the uncompressed data in main memory. As the compressed
stream does not explicitly encode full connectivity information, we
dynamically derive such data on the fly during decompression and
link together adjacent in-memory elements in the mesh.
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Fig. 1. Clustering of Vertices and Triangles: The interleaved se-
quence of vertices and triangles is pre-order vertex-compact [19]. v;
denotes the geometry of the i" vertex; #; denotes the three vertex in-
dices of the i triangle. The boxes indicate the decomposition of the
mesh into clusters, here consisting of two consecutive triangles.

4 TRIANGLE MESH COMPRESSION

In this section we describe our cluster-based order-preserving com-
pression method. We first review the streaming, sequential access
compression scheme that our order-preserving method is built upon.
Then, we describe the extensions necessary to support random access.

4.1 Streaming Mesh Compression

Isenburg et al. [20] proposed a streaming compression method for tri-
angle meshes represented in a streaming format [19]. This method
sequentially compresses a mesh of nearly arbitrary size in an I/O ef-
ficient manner. There are two major components of this method that
our compressor also utilizes.

Input data format: The streaming mesh compressor operates on
vertex-compact streams in pre-order format (Fig. 1). In a pre-order
format, each vertex appears in the stream before all triangles that
reference it. If the stream is also vertex-compact, the first triangle
that follows a vertex is guaranteed to reference that vertex. Vertex-
compactness ensures that vertex and triangle layouts are interleaved,
and that vertices are not buffered earlier than necessary. The require-
ment that the input be vertex-compact and pre-order is not particu-
larly restrictive as all triangle layouts have a “compatible” (though not
unique) vertex-compact pre-order vertex layout. Note that all face-
based compressors naturally produce vertex-compact pre-order output.

Finalization: The other key feature of the streaming mesh com-
pressor is the use of finalization information. Finalization of a vertex
indicates that it will not be referenced by any subsequent triangles in
the stream. Hence, during compression we may safely limit refer-
ences to the set of active vertices that have been introduced but not yet
finalized. Typically the active vertices are only a small fraction of all
vertices, which aids in efficient coding of vertex references. Finaliza-
tion is usually known to mesh writing applications, and can easily be
incorporated with most mesh formats. See [19] for how to compute
such information in case it is not readily available.

Our random access compression method uses the pre-order format
as input and preserves the order during compression. It also exploits
and encodes finalization. Because of this, our compressed meshes can
be used also in streaming computations with little overhead, although
our method is mainly designed for random (non-sequential) access.

4.2 Cluster-Based Order-Preserving Compression

Our compression method reads intermixed sequences of vertices and
triangles in a pre-order streaming file format with finalization infor-
mation. During compression, we implicitly decompose vertices and
triangles into a set of clusters (Fig. 1). A cluster C consists of a fixed
number of consecutive triangles (e.g., 4K triangles) and those vertices
introduced (first referenced) by the triangles in C. As a consequence,
although each cluster has a fixed number of triangles, the number of
vertices per cluster may not be the same (though the variation in vertex
count is usually low).

We compress the triangles and vertices assigned to a cluster only
based on information collected from the cluster. Therefore, at runtime
each cluster may be independently decompressed, which accommo-
dates random access to the mesh at the granularity of clusters. Note
that not all vertices referenced by the triangles in a cluster have their
geometry encoded in the same cluster, nor are all triangles incident on
a vertex stored in the same cluster. We will resolve this “stitching”
problem in our runtime decompression framework.

Terminology: For a mesh element e such as a vertex or a triangle,
we represent its index as Idx(e). Let C(e) denote the cluster containing
e, and let C; indicate the cluster whose index is i, with Cy being the
first cluster. If a triangle of C; references a vertex stored in Cj, we say
that C; references C;. Let R<(C) denote the set of clusters referenced
by cluster C and R>-(C) denote the set of clusters that reference C.
Whenever C; references C;, we have C; € R<(C;) and C; € R~(G;).

Cluster properties: Given vertex-compact pre-order input, the
following lemmas are easily derived from our definition of clusters.
The lemmas will be used later to show the correctness of our method.
Lemma 1 (Triangle existence): For a vertex v introduced in a cluster
C(v), at least one triangle in C(v) references v.

Lemma 2 (Triangle containment): The triangles incident on a vertex
v are either in the same cluster, C(v), or in R>~(C(v)).

4.3 Encoding Compression Operators

For each cluster, our compressor sequentially reads vertices and trian-
gles from the streaming mesh. For each triangle ¢, we first determine
the compression operator associated with 7, which tells how ¢ is con-
nected to the set of already compressed triangles within the cluster.
As in [20], we use five different compression operators (or config-
urations): START, ADD, JOIN, FILL, and END. START indicates that
t shares no edge with the already compressed triangles in the cluster;
in ADD and JOIN there is one shared edge; in FILL and END there are
two and three shared edges, respectively. For example, the sequence of
compression operators for the mesh in Fig. 1 is “START, ADD, ADD,
ADD.” For START, ADD, and JOIN cases, we also determine how
many new vertices the triangle introduces and encode their geome-
try. The number of introduced vertices ranges from O to 3 for START,
equals 1 for ADD, and is O for JOIN. These compression operators
can be easily determined by maintaining a half-edge data structure.
For each coded triangle, three half-edges are created. Once a vertex is
finalized, the half-edges incident on the vertex may be deallocated.

Compression side: We compute these sequences of compression
operators based on the half-edge data maintained from the first triangle
of the input to the current triangle being compressed. This means that
we do not deallocate the existing half-edge data when we transit from
one cluster to the next during compression. The main reason for this
is to avoid any duplicate storing of vertex geometry in the compressed
mesh, since otherwise we would not know whether a vertex first refer-
enced in a cluster was introduced here or by a triangle in some earlier
encoded cluster. We therefore encode the compression operator in the
context of global information of all the encoded triangles and vertices.

Decompression side: In contrast to the compressor, the decom-
pressor does not need to maintain global information for all encoded
triangles and vertices. Given a decoded compression operator, we can
deduce the vertex indices associated with the triangle. Some of these
indices may refer to vertices stored in another cluster. If an applica-
tion requests geometry (as opposed to only connectivity) information
for such vertices, our runtime framework determines which cluster has
that information, decodes it, and returns it to the application.

4.4 Encoding Mesh Elements

Once the compression operator for a triangle is encoded, we encode
the vertices referenced by the triangle. For each such vertex v, there
are two cases: v is referenced for the first time, or v has already been
introduced. When v is introduced by a triangle, we encode its ge-
ometry and attributes (e.g., color). Note that in this case we do not
need to encode v’s index since it must equal the current global vertex
count. This vertex count is made available to the decompressor by
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(a) (b) Z-order space-filling layout (c)

(d) Depth-first layout

Fig. 2. Clusters for Different Layouts: This figure highlights clusters of 8K consecutive triangles for different layouts of the Puget Sound terrain
simplified to 512K triangles. The cluster colors smoothly vary with the sequential layout from red to yellow to green, and the brightness alternates
between each consecutive pair of clusters. The cache-oblivious mesh layout has high spatial coherence, leading to well-shaped clusters with short
boundaries and few inter-cluster references. As a result, it yields the highest compression ratio and best runtime performance on our benchmarks.

storing with each cluster, C, the global index of C’s first vertex, which
is maintained incrementally during compression.

In the other case, when vertex v was introduced earlier, we are inter-
ested only in encoding its index Idx(v) since v’s geometry has already
been encoded. In order to effectively encode this index, we make use
of three layers of compression contexts: (1) a cache holding the three
vertices of the previous triangle in the current cluster, C(v), (2) the
active (unfinalized) vertices of C(v), and (3) the vertices among the
clusters R<(C(v)) referenced by C(v). The first and second layers are
for in-cluster vertices stored in the current cluster, and the third layer
is for out-of-cluster vertices stored in other clusters.

If vertex v was also referenced by the previous triangle we encode
which of the three vertices in the cache v corresponds to. Otherwise,
we check whether v is an active vertex of the current cluster, and if
so encode its position in a dynamic vector (containing active vertices)
maintained by both encoder and decoder. Note that the set of active in-
cluster vertices is usually much larger than the three vertices stored in
the cache, but is also much smaller than the entire set of vertices stored
in the current cluster. Finally, if v is not among the active vertices, we
conclude that it is in another cluster C; among the set R<(C(v)). In
this case, we decompose its index into a pair index (i,k) where i is
the global cluster index for C; and k is an offset within C;. Instead of
directly encoding the pair (i,k), we map the global index i to a local
index j within the set R<(C(v)). This is beneficial as the number of
clusters in R<(C(v)) is usually much smaller, e.g. 4 on average for
cache-oblivious layouts, than the total number of clusters.

After finishing compressing the mesh, we have accumulated infor-
mation specific to each cluster C, such as C’s position in the com-
pressed file, its first vertex index, and the variable-size sets R<(C)
and R>(C) that must be written as header information. We store this
header information as a separate, uncompressed file. In our bench-
marks, the header files are roughly 2 MB, or about 1% of the total
compressed file size. The decompressor is initialized with this header
information to allow any cluster to be decompressed at runtime.

Memory usage and time complexity: The data structures needed
to perform the operations described above are small because the data
is limited to the set of active vertices and the elements of the current
cluster. The time complexity of encoding and decoding a triangle is
constant. This is made possible by using a hash table of active vertices
to map a global index /dx(v) to the cluster-offset pair (i, k).

Half-edge based coding: We further improve the compression ra-
tio by encoding some of the vertex indices based on existing half-edge
information around vertices, as proposed in [20]. We encode the in-
dex of an in-cluster vertex by specifying which of the set of half-edges
it is associated with. For example, when the compression operator is
ADD, we may encode two active vertices by the single half-edge that
joins them, and to which the triangle being encoded is attached. Re-
call that we deallocate all the existing half-edge information when we
encounter a new cluster in the decompressor. Therefore, the compres-
sor, too, needs to consider only those half-edges created in the current
cluster. This half-edge based coding requires a small amount of com-
putational overhead, such as traversing half-edges for the vertices of

a triangle. However, we can achieve a higher compression ratio since
the number of half-edges around a vertex is typically small (e.g., 6).

Geometry prediction: We use the parallelogram rule [38] to pre-
dict the position of a vertex v3 introduced by a triangle ¢. To perform
the parallelogram prediction in an ADD operation, we require geom-
etry information for the three vertices of an adjacent, already com-
pressed triangle that shares v; and v, with r. However, these vertices
may be stored in other clusters and, thus, their geometry information
may not be available when we compress or decompress the current
cluster. In this case, we simply use v or v as prediction, if available,
or otherwise the third “opposite” vertex. When no nearby vertex is
available, we use the last encoded vertex as prediction.

Arithmetic coding: We use context-based arithmetic coding for
compression operators, vertex indices, and geometry. In particular,
we use the previous compression operator as context for the next one.
We also re-initialize all probability tables with a uniform distribution
when compressing a new cluster in order to allow independent decod-
ing of clusters. To minimize the impact of this periodic initialization
on compression, we employ a fast adaptive probability modeler [35].

5 RUNTIME MESH ACCESS FRAMEWORK

In this section we present our runtime decompression and caching
method that provides transparent random access.

5.1 In-Core Mesh Representation

When the application requests geometry or connectivity for a mesh
element, our underlying decompression framework fetches and de-
compresses the cluster containing the element into an in-core partial
mesh representation. To support a general mesh access mechanism,
we represent our decompressed in-core mesh in a corner data struc-
ture similar to the ones proposed by Rossignac [32] and Joy et al. [22].
Conceptually, this data structure consists of two contiguous global ar-
rays of vertices and triangles large enough to hold the entire mesh.

A corner associates a triangle t with one of its vertices v (see Fig. 3).
For each vertex v we store its coordinates and an index v.c to one of its
incident corners. A triangle is represented as three corners that each
store an index c.v to the corresponding vertex v and an index c.nve
within a circular linked list to the next corner incident to v. Similarly,
pointers z.c and c.r between corners and triangles and pointers c.nfc
within triangles allow instant navigation between adjacent elements.
By traversing the c.nvc pointers around v, we can find all the triangles
incident to v (whether v is manifold or not). As in [32], the corners of
triangle 7 have consecutive indices 3i, 3i+ 1, and 3i+ 2. Hence t.c, c.t,
and c.ntc can be efficiently computed and need not be stored.

The corner table can be incrementally constructed via constant-time
insertions. As we sequentially decompress the global vertex indices of
each triangle, we compute corresponding corner indices from the tri-
angle index. We then insert each corner into its vertex’s circular corner
list. Because each vertex is introduced by a triangle via a compression
operator, at least one incident corner (triangle) is always available.



struct Vertex {
struct Coords {
float x, y, z; //
}s

Index c; 1/

geometry

incident corner

struct Triangle {
struct VertexIndices {
Index v[3]; /l vertices
struct CornerIndices {
Index nvc[3]; // next vertex corners

5

Fig. 3. Corner Representation: A corner ¢ (yellow) associates a triangle ¢ (light blue) with one of its vertices v (dark gray). For each corner ¢, we
provide access to the next corner c.ntc in t, as well as the next corner (in no particular order) c.nve around v. These corner pointers form circular
linked lists around vertices and triangles. We also store a pointer c.v to v from each incident corner ¢, and a pointer v.c from v to one of its corners.
Similar pointers between corners and triangles, as well as c.ntc, can be derived on the fly, and need not be stored (shaded/dotted). The actual

vertex and triangle data structures are shown on the right.

5.2 Mesh Access API

We provide the following atomic API to support random access to the
compressed mesh based on the data structures in Fig. 3:

Coords GetVertex(Index v;;,): Return the coordinates of vertex v.

VertexIndices GetTriangle(Index #;,4,): Return the three vertex in-
dices of triangle 7.

Index GetCorner(Index vy ., Index #;,4,): Return the corner join-
ing vertex v with triangle 7.

Index GetVertexCorner(Index v;;,): Return one of the corners,
v.c, incident to v.

Index GetTriangleCorner(Index ¢#;4,): Return one of the corners,
t.c, of triangle ¢.

Index GetCorner Vertex(Index c;;,): Return the vertex, c.v, asso-
ciated with corner c.

Index GetCornerTriangle(Index c;4,): Return the triangle, c.t,
associated with the corner c.

Index GetNextVertexCorner(Index cj;,): Return the next corner,
c.nve, incident on the vertex associated with corner c.

Index GetNextTriangleCorner(Index c;;,): Return the next cor-
ner, c.nfc, within the triangle associated with corner c.

Based on this low-level API, it is possible to implement higher-level
functionality. For example, to compute all the triangles incident to a
vertex, we make a call to GetVertexCorner followed by a sequence
of interleaved GetCornerTriangle and GetNextVertexCorner calls. We
implement our benchmark applications, discussed later, using our API.

5.3 Page-Based Data Access

Whenever a request to access a mesh element is made, we have to
first identify the cluster containing it. Though clusters have a fixed
number of triangles (and thus corners), their vertex counts generally
vary. Therefore mapping vertices to clusters is not straightforward,
and techniques like binary search can be slow for large meshes. Since
every vertex access requires a cluster lookup, e.g. to determine whether
the cluster is cached, it is important that this lookup be done efficiently.

To provide a fast mechanism for mapping vertex indices to clus-
ters, we decompose the global vertex array into fixed-size contiguous
pages, each of which holds a power-of-two (e.g., 1K) vertices (Fig. 4).
With each page we store the memory address of the corresponding
vertex sub-array, the indices of the clusters that overlap the page, as
well as a state variable that indicates whether the page is cached and,
if so, the level of connectivity information available: “none,” “partial,”
or “full” connectivity (to be explained in Sec. 5.4). We keep simi-
lar cluster-specific state with the in-core cluster meta data, and each
page’s state indicates the least common information available for its
clusters. The page table is initialized by reading the header file con-
taining cluster file offsets and dependencies R< and R> and by mark-
ing all pages as “not loaded.” This initialization task takes only tens of
milliseconds in our benchmarks.

Fig. 4. Page-Based Data Ac-
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The main benefit of this page structure is that it allows accessing
the required data using few operations. For example, when GetVertex
is called, we first compute the page index corresponding to the vertex
using only a bit shift. If the page is not completely loaded, we load all
uncached clusters associated with the page, decompress them into our
in-core mesh data structure, and set the page’s state to “loaded with no
connectivity.” If the page is loaded the next time it is accessed, we di-
rectly return the requested data from our in-core mesh representation,
which allows constant-time access to uncompressed data.

One downside of this approach is that more than one cluster may
have to be loaded when accessing a single element. On the other hand,
if data and access locality are high, it is likely that adjacent clusters
will be needed for subsequent vertex accesses. Nevertheless, to reduce
the average number of clusters per page to close to one, we make the
page size smaller than the cluster size.

5.4 On-Demand Connectivity Construction

To reduce the number of I/O requests, we dynamically construct only
the connectivity needed to correctly execute our API calls. As ex-
plained earlier, pages and clusters can have “no,” “partial,” or “full”
connectivity, corresponding to the amount of information needed by
the calls GetVertex, GetVertexCorner, and GetNextVertexCorner, re-
spectively. These states are described below.

No connectivity: If the page P(v) containing v is loaded as a re-
sult of a GetVertex(v) call, no effort is made to compute connectivity
information for the page since only v’s geometry is needed. In this
case, we initialize v.c for all vertices in P(v) to null.

Partial connectivity: To process a GetVertexCorner(v) call, we
gather sufficient connectivity information for the page P(v) containing
v. We first determine the clusters C(P(v)) that overlap P(v) and then
visit each triangle ¢ contained in these clusters. For each vertex u € ¢,
we determine whether u is currently cached, and if so connect 7 to u via
a c.nvc corner pointer. Since some vertices referenced by  may reside
in other clusters not yet cached, we put any corners corresponding to
such uncached vertices on a SkippedCorners list stored with ¢’s cluster.
This list holds corners not yet connected to their vertices and adjacent
corners, and will be consulted later when such uncached vertices are
loaded. After we process all the clusters of the page, we set their
states and the page’s state to “partially connected.” At this point, we
are guaranteed by Lemma 1 (see Sec. 4.2) to have at least one cached
corner for vertex v, which can then be returned by GetVertexCorner.



Full connectivity: When GetNextVertexCorner(c) is called to ac-
cess the next corner around the corresponding vertex v, all the corners
incident to v have to be loaded into v’s circular corner list in order
to guarantee correctness. We achieve this by performing the follow-
ing steps. We first load the cluster that contains ¢ and identify the
vertex v. Then, for each cluster C that overlaps P(v), we load and
build partial connectivity for C and the clusters R>-(C) that reference
C. For each cluster D € R>(C), we extract from D’s SkippedCorners
list each corner that corresponds to a vertex u# € C and connect it to u.
By Lemma 2 (see Sec. 4.2), after this step all corners around v (and
all other vertices in P(v)) have been connected, and as a final step we
set the state of each C € P(v) and P(v) itself to “fully connected.” The
next time GetNextVertexCorner is called, we simply return the corner
from our in-core mesh representation if P(v) is “fully connected.”

The main difference between the states “partially”” and “fully” con-
nected is whether we have to load the clusters R~ (C) that reference the
cluster C containing the requested vertex. By maintaining three sep-
arate states, we ensure that the correct results are returned with each
API call while maintaining a minimal set of loaded clusters.

5.5 Memory Management

The page table also serves as a memory management mechanism for
massive models whose uncompressed data cannot fit in main memory.
For this purpose, we also maintain a page table for triangles/corners,
with a one-to-one mapping between triangle pages and clusters. Ap-
plications may specify a maximum allowance on memory use, which
limits the number of pages cached. When a new page is needed and
the page table is full, we have to unload a page P and each overlapping
cluster C to make room for the new page. Note that vertices in R<(C)
may have incident corners in C, and thus their full connectivity depend
on C being present. To ensure that future connectivity queries to ver-
tices in R<(C) are correctly answered, we mark the clusters R<(C) as
“partially” connected when C is evicted from memory.

We use a FIFO page replacement policy modified as follows for
the special case of GetNextVertexCorner calls around vertex v. Before
making space in the vertex page table for the uncached cluster C(v)
and page P(v), we move all cached pages that overlap R>-(C(v)) to the
back of the FIFO, as the triangles in R>(C(v)) are needed to complete
the call. This ensures that the necessary clusters R>(C(v)) are not
evicted as a result of loading P(v) into a full page table.

5.6 Coherent Mesh Layout

Both cluster decompression requests and in-core cache misses can
be drastically reduced by organizing mesh vertices and triangles in
a coherent order. To achieve this goal, we use cache-oblivious tech-
niques [41,42] to order the triangles of the mesh using the OpenCCL
library [44]. We then produce a pre-order vertex-compact layout by
reordering the vertices to be “compatible” with the triangles [19], i.e.
the vertices are sorted on the order in which they are first referenced
by a triangle. While such “induced” vertex layouts are not necessarily
optimal, our compressor requires them, and we have empirically ob-
served that they also exhibit good locality [41]. An example of triangle
clusters derived from a cache-oblivious layout is shown in Fig. 2.

6 RESULTS

To demonstrate the benefits of our method, we have implemented two
applications using our compressed mesh API: iso-contour extraction
and mesh reordering. We chose these two applications since they both
traverse the mesh in an order that is reasonably coherent though dif-
ferent from the original layout. Moreover, iso-contour extraction typ-
ically accesses only a small subset of the mesh, whereas reordering
requires traversing the entire mesh.

We have implemented our compressor, decompressor, and applica-
tions on an Intel Pentium 4 mobile laptop running Windows with a
2.1 GHz CPU, 2 GB of main memory, and a 15 MB/s IDE disk drive.
We limit our applications to use no more than 1.5 GB of main mem-
ory to cache uncompressed data. Our compression method requires as
input a streaming mesh format, which is straightforward to write or to
generate from non-streaming formats [19].

Elements | Raw Compressed Speedup
Model #T | #V | Size | Size | Header | Geom. | Conn. Ratio Con-| Re-
M) | (M) | (MB)| (MB)| (MB) | (bpv) | (bpv) tour | order

3,712 173 2.2 13.5 79 | 214 25| 6.7
2,842 171 1.7 194 | 82 | 166 | 23 | 43
3,543 | 178 2.1 14.8 81 | 199]| 24 | 34

Puget Sound 134| 67
RMI isosurface | 102 | 51
St. Matthew 128 | 64

Table 1. Compression and Speedup: Triangle and vertex counts, file
size of uncompressed and compressed meshes, compression ratio, and
iso-contouring and mesh reordering speedups are listed. The coding
cost is separated into geometry, connectivity, and cluster header data.
The uncompressed (raw) meshes are stored on disk in our corner table
representation (Fig. 3), modified to use 16-bit quantized integer coordi-
nates to match the precision used by the compressor. The meshes were
compressed using 4K triangle clusters and a cache-oblivious layout.

[ Model [ Triangles [ Vertices [ TG [38] [ CKLLS [8] [ ILS [20] [ Ours [ Raw |

Dino 28,096 | 14,050 19.8 22.8 25.2 31.8 [ 452.0
Igea 134,342 | 67,173 17.2 17.7 223 25.0 | 452.0
Table 2. Compression Comparison: Mesh size in bits per vertex is

reported for four different methods, including ours. For a fair comparison
with [8], we use 12-bit quantization and 50 clusters. TG and CKLLS
results are excerpted from [8]. Since our method preserves the layout
and supports random access, its compression ratio is lower compared
to the other techniques.

6.1 Compression Results

We evaluate our compression method on several benchmark models,
including a large, simplified terrain model of the Puget Sound area
(Fig. 5), the RMI iso-surface model from LLNL, and Stanford’s St.
Matthew model, each totaling over 100 million triangles (see Table 1).
We uniformly quantize each vertex coordinate to 16 bits, which is
more than enough precision to faithfully represent these meshes. Our
compressor encodes these meshes at an average rate of 380K triangles
per second on our laptop. For example, it takes around 6 minutes to
compress the Puget Sound model.

We compare the file sizes of our compressed meshes with those
of the original uncompressed meshes stored on disk in the corner
table representation shown in Fig. 3, modified to use 16-bit integer
rather than floating-point coordinates. Though a conventional indexed
mesh representation requires less space, it does not support the same
functionality required by our API and by our benchmark applications.
Also, while constructing a full corner table from an indexed mesh can
be done in linear time, performing this task at startup incurs unaccept-
able overhead and wastes disk space. Compared to the uncompressed
corner table representation stored in cache-oblivious order, our com-
pressor reduces the three benchmark models by factors 17-21, and by
9-12 compared to indexed meshes. This results in 21.4, 28.0, and
23.3 bits per vertex (bpv) for the Puget Sound, RMI isosurface, and
St. Matthew model, respectively.

Comparison with other methods: Compared with Isenburg and
Gumbhold’s out-of-core compressor [18], which neither preserves the
layout nor supports random access, our compressed representation of
the St. Matthew model is 50% larger than theirs (15.3 vs. 22.9 bpv).
We compare our method against the order-preserving compressor of
Isenburg et al. [20]. The overhead in storage incurred by our method
relative to theirs is on average a modest 16% for our large models. This
overhead is mainly due to additional information (e.g., cross-cluster
vertex references) needed to support random access.

We also compare the compression ratio of our method to those of
Touma and Gotsman (TG) [38] and Choe et al. (CKLLS) [8]. The
overhead of our method is about 40% and 50% over CKLLS and TG
(see Table 2). Like [18], the TG method does not support random
access. Although the CKLLS method does, it does not accommodate
seamless mesh traversals or order preservation for transparent mesh
access and higher cache utilization.

6.2 Iso-contouring

The problem of extracting an iso-contour from a scalar function de-
fined on an unstructured mesh frequently arises in geographic infor-
mation systems and scientific visualization. Many efficient iso-contour
extraction methods employ seed sets to grow a contour by traversing



Fig. 5. Puget Sound Iso-contour: The contour line (in black) at 720 m
elevation was extracted from an unstructured terrain model consisting
of 134M triangles. The contour passes through 286K triangles.

only those mesh elements that intersect the contour. The running time
of such an algorithm is typically dominated by the traversal of the in-
tersected mesh elements. We efficiently extract an iso-line from a seed
triangle by traversing the contour in a depth-first order, thereby access-
ing the surrounding mesh in a reasonably coherent manner, but in an
order different from the layout of the mesh.

We compare the running time of extracting iso-contours for 20 ran-
domly chosen iso-values on the three benchmark models using (1) our
compressed representation with 4K triangle clusters and (2) a fully
uncompressed on-disk corner table. Both representations are stored
in the same cache-oblivious layout and accessed using the same API.
(For our non-terrain surfaces, we use one of the coordinates as function
value, which reduces iso-contouring to “slicing” the mesh.) We do not
perform explicit memory management of the uncompressed meshes,
but rely on the virtual memory management of the operating system
(which includes disk block buffering) by memory mapping the uncom-
pressed corner table file.

We achieve on average 2.5 times and as much as 6.4 times speedup
extracting one iso-contour from the Puget Sound mesh when using the
compressed representation. Similar gains are observed on other mod-
els (Table 1). The main reason for this speedup is the drastic reduction
in expensive disk reads while traversing and loading uncached por-
tions of the mesh. Though compression reduces disk space and data
transfer, it increases memory use. We measure the total working set
size, i.e. the amount of data loaded and cached, in our application in
multiples of the 4 KB memory page size on our system. With a clus-
ter size of 4K triangles and a cache-oblivious layout, our method uses
four times as much memory as when no compression is used. The two
main reasons for this are: (1) we cache data at a coarser granularity
(128 KB clusters versus 4 KB memory pages), and (2) when a cluster
C is accessed, our method often requires loading additional clusters
R~ (C) that reference C in order to ensure correct connectivity.

Below we will further discuss the performance of our method in
detail using the Puget Sound model as a test case.

Dependence on cluster size: We measure iso-contouring perfor-
mance and compressed file size as a function of cluster size using
cache-oblivious layouts and a fixed vertex page size that on average
equals half the cluster size. In general, compression improves with
larger cluster size as a result of fewer out-of-cluster references, which
impacts both connectivity and geometry rates. Larger clusters also im-
prove I/O throughput because of the size-independent overhead due to
disk latency. On the other hand, very large clusters increase the work-
ing set size and reduce the ability to selectively access mesh elements,
which negatively impact performance.

These competing factors are illustrated in Fig. 6, which shows that
the optimal cluster size in terms of overall performance is 4K trian-
gles. This cluster size also results in good compression compared to
using much larger clusters. Assuming a 2:1 ratio between triangles
and vertices, a 4K triangle cluster decompresses to 128 KB of in-core
storage (i.e. irrespective of the compression rate). The corresponding
compressed size on disk is 5.3 KB per cluster for Puget Sound.

Dependence on layout: We compare the performance of iso-
contouring using compressed and uncompressed meshes in different
layouts, including cache-oblivious (COML) [41, 42], Z-curve [33],
depth-first (DFL), breadth-first (BFL), and spectral (SL) [19] layouts
of the Puget Sound model (see Table 3). Note that the Z-curve is also
a cache-oblivious layout that works particularly well for regular grids.

3,750 OFile size Olso-contouring time ris
3'700J—D L 16

3 250 I
N 200
0 150 6
100 4
50 M2
0+ 1 A1 1 d . 2 0
1K 2K 4K 8K 16K
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Cluster size (triangles)

Fig. 6. Dependence on Cluster Size: The Puget Sound iso-
contouring time and compressed file size depend on the cluster size.
The highest performance is attained using 4K triangles per cluster, for
which the compression ratio is 21:1 and the speedup is 2.4 relative to
using no compression.

Size Contouring time (s)

Layout (MB) Raw [  Compressed Speedup
Cache-oblivious 178 5.1 2.1 2.4
Z-curve 261 8.2 5.0 1.6
Depth-first 287 8.6 6.0 1.4
Breadth-first 312 62.0 44.9 1.4
Spectral 461 31.0 91.0 0.3

Table 3. Dependence on Layout: The table lists the compressed

file size and iso-contouring time for various layouts of the Puget Sound
model stored in compressed and uncompressed format. The use of
compression results in speedups as high as 2.4 for the cache-oblivious
layout, which also performs better in relation to all other layouts. Out-
of-core access to the spectral layout, whose poor locality leads to low
compression and excessive paging, is not accelerated by compression.

Using compression we achieve 2.4, 1.6, 1.4, and 1.4 times iso-
contouring speedup for COML, Z-curve, DFL, and BFL, respectively.
Although we observe meaningful speedups with depth- and breadth-
first layouts, our results show a clear advantage of using cache-
oblivious or similar layouts that exhibit spatially coherent clusters,
both relative to other layouts (e.g., 4, 16, and 21 times speedup over
DFL, BFL, and SL, respectively) and to using no compression. Higher
coherence results in a smaller working set size, fewer I/O calls, better
in-memory cache utilization, and hence better performance. This abil-
ity to optimize and preserve the layout during compression is one of
the features that sets our scheme apart from prior methods like [8].

Table 3 shows that compression hurts performance when used with
the spectral layout. Though globally coherent, triangles in this layout
appear in a nearly random order along the advancing front, which is
often wider than the 4K cluster size. This leads to poor compression
and locality, and excessive loading of clusters.

The layout of a mesh also significantly affects compression, as is
evident from Table 3. Because of its well-shaped clusters, the cache-
oblivious layout yields the best compression ratio among our layouts.

Comparison with stream processing: As demonstrated in [19],
streaming computations can be very efficient for out-of-core process-
ing of large meshes. We compare our compressed random-accessible
meshes with the sequential-access compression scheme of Isenburg et
al. [20] by measuring the time to extract an iso-contour from Puget
Sound stored in a cache-oblivious layout. Whereas our scheme allows
random access to the elements intersected by the contour, the stream-
ing technique supports only sequential access and hence must traverse
and decompress (nearly) the entire mesh. As a consequence, we obtain
a 45:1 speedup over the streaming scheme on this task.

There are other geometry processing tasks more suitable for stream-
ing access (e.g. smoothing, vertex normal computation) that require
only local information around mesh elements, and for which the pro-
cessing order does not matter (e.g. sequential access is possible). Be-
cause our scheme uses streaming (de)compression within each clus-
ter and provides “finalization” information, it also efficiently supports
streaming access. Sequential decompression of the entire data set via
our API takes only 33% longer than using Isenburg et al.’s scheme.
Since we efficiently support both random and sequential access, we
believe that our method has a significant advantage over theirs.



6.3 Mesh Reordering

As evidenced here and in [19,37,42], the problem of computing a good
layout of a large mesh is itself an important but challenging problem
that traditionally is done using external sorts. As another benchmark,
we compute a breadth-first triangle layout from a (different) cache-
oblivious one, which cannot be done efficiently using external sorts
alone. This task differs from iso-contouring in that the entire mesh is
traversed, but is similar in that it requires random access and is there-
fore not easily streamable. Using compression, we achieve 3.4-6.7
times speedup on our benchmark models (Table 1). Moreover, we ob-
serve similar speedups using clusters in the range 2K-16K triangles.

7 CONCLUSION AND FUTURE WORK

We have proposed a novel out-of-core framework that supports trans-
parent random access to compressed triangle meshes through selective
decompression of small clusters of mesh elements. In order to provide
a seamless mesh traversal mechanism, our method dynamically con-
structs the connectivity information necessary for querying incidence
and adjacency information through a common mesh access API. One
distinguishing feature of our method is that it preserves the ordering
of triangles in the mesh, which allows tailoring the data layout to the
anticipated access pattern. In conjunction with cache-oblivious lay-
outs, we demonstrate that the reduced I/O bandwidth implied by com-
pression leads to significant improvements in performance without the
need for end-application code changes. We show that other layouts
also benefit from mesh compression, and that our compressed rep-
resentation can be used efficiently for sequential stream processing.
Source code for our compressor and mesh access API is freely avail-
able athttp://www.cs.unc.edu/ sungeui/RAC.

We envision many avenues for future work. Foremost, our current
scheme is primarily suited for read-only access, and we would like
to extend the method to efficiently handle modifications to the mesh,
e.g. for geometry processing and interactive editing. The intrinsic par-
titioning of the mesh into independent clusters suggests the potential
for parallel computations. One benefit of our scheme is that it obvi-
ates overlapping layers of “ghost” information across clusters. Fur-
thermore, domain decomposition can be efficiently done by assigning
clusters to compute nodes. Finally, we plan to investigate extensions
of our method to hierarchical data in order to improve the performance
of ray tracing and collision detection between massive models.
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